Cho A= n-2\n+3. Tìm giá trị của n để A là một phân số; A là một số nguyên
Cho biểu thức A= \(\dfrac{2n+1}{n-2}\)
a) Tìm điều kiện của số nguyên n để A là một phân số. Tính giá trị của A khi n= -2.
b)Tìm các số nguyên n sao cho phân số A có giá trị là một số nguyên.
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
1 )tìm các số x, y thuộc N biết rằng (3 +x)/(7+y)=3/7 và x+y =20
2 )cho phân số (n+19)/(n+6) (n thuộc N)
a)tìm các giá trị của n để phân số có giá trị là số tự nhiên
b)tìm giá trị của n để phân số là tối giản
3 )tìm một phân số bằng 3042/3978 sao cho tổng của tử và mẫu là 60
Khó vãi lìn.Ai mà giải được,toán lớp 6cow màaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Cho A=7/n-3 a. Tìm đk của n để A là phân số b. Tìm n thuộc z để A = -1/2 c. Tìm giá trị nguyên âm của n để A có giá trị nguyên
a) Để A là phân số thì \(n-3\ne0\)
hay \(n\ne3\)
b) Để A=-1/2 thì \(\dfrac{7}{n-3}=\dfrac{-1}{2}\)
\(\Leftrightarrow-1\left(n-3\right)=14\)
\(\Leftrightarrow n-3=-14\)
hay n=-11(thỏa ĐK)
Vậy: Để A=-1/2 thì n=-11
Cho A=n-2/n+3.Tìm giá trị của n để
a)A là phân số
b) A là một số nguyên
a/ để A là phân số <=> n+3 khác 0
<=>n khác -3
b/n-2/n+3 = n+3-5/n+3 =1+-5/n+3
để A nguyên thì n+3 thuoc ước của -5
=>n=-4,-2,2,-8
Cho A= 2n-7/n-2 (n thuộc Z)
a) Tìm giá trị của n để A là phân số.
b) Với n thỏa mãn ( n2+1) x (n3 + 64) =0, tính A.
c) Tìm các giá trị của n để A=3.
d) Tìm các giá trị của n để A là số nguyên.
e) Tìm các giá trị của n để A là phân số tối giản.
Giúp mình với, mình đang cần gấp. Ai trả lời nhanh nhất và đúng nhất mình sẽ cho tick
Mọi người ghi cả cách giải nhé
Cho phân số A=\(\dfrac{n+1}{n-3}\) (n\(\in\)Z)
a, Tìm các giá trị của n để A là phân số.
b, Tìm n để A có giá trị nguyên.
a, Để A là phân số khi n - 3 \(\ne\)0<=> n \(\ne\)3
b, Để A nguyên khi \(n+1⋮n-3\Leftrightarrow n-3+4⋮n-3\Leftrightarrow4⋮n-3\)
\(\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n - 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a) Để A là phân số thì \(n-3\ne0\)
hay \(n\ne3\)
b) Để A là số nguyên thì \(n+1⋮n-3\)
\(\Leftrightarrow4⋮n-3\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{4;2;5;1;7;-1\right\}\)
cho A=\(\dfrac{n-6}{n-2}\) với n là số nguyên
a) Tìm điều kiện của n để A là phân số
b) Tìm n để A nhận giá trị là số nguyên âm lớn nhất
c) Tìm n để A nhận giá trị là số tự nhiên
d) Tìm giá trị lớn nhất và giá trị nhỏ nhất của A
hellp!!!
a) Để A là phân số thì : \(n-2\ne0=>n\ne2\)
b) Để A nhận giá trị nguyên âm lớn nhất
\(=>A=-1\\ =>\dfrac{n-6}{n-2}=-1\\ =>n-6=-\left(n-2\right)\\ =>n-6=-n+2\\ =>n+n=6+2\\ =>2n=8\\ =>n=4\left(TMDK\right)\)
c) \(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)
Để A nhận gt số nguyên thì : \(\dfrac{4}{n-2}\in Z=>4⋮\left(n-2\right)\\ =>n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{3;1;4;0;6;-2\right\}\)
Đến đây bạn lập bảng giá trị rồi thay từng gt n vào bt A, giá trị nào cho A là STN thì bạn nhận gt đó ạ.
d) Mình nghĩ bạn thiếu đề ạ
Cho A = n + 3 n + 2 với n ∈ Z.
a) Tìm điểu kiện của số nguyên n để A là phân số.
b) Tính giá trị của phân số A khi n = 1; n = -1.
c) Tìm số nguyên n để phân số A có giá trị là số nguyên:
a) n ∈ Z và n ≠ –2
b) HS tự làm
c) n ∈ {-3;-1}
Cho phân số A = n + 9 / n-6 (n ; n > 6)
a) Tìm các giá trị của n để phân số có giá trị là số tự nhiên.
b) Tìm các giá trị của n để A là phân số tối giản.
a: Để A là số tự nhiên thì n-6+15 chia hết cho n-6
=>\(n-6\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
mà n>6
nên \(n\in\left\{7;9;11;21\right\}\)
b: \(A=\dfrac{n-6+15}{n-6}=1+\dfrac{15}{n-6}\)
Để A là phân số tối giản thì ƯCLN(n-9;n-6)=1
=>ƯCLN(15;n-6)=1
=>n-6<>3k và n-6<>5k
=>\(n\notin\left\{3k+6;5k+6\right\}\)