(Đề thi tuyển sinh vào 10 - THPT chuyên - Lâm Đồng)
Giải phương trình \(\frac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)
(Đề thi tuyển sinh vào 10 - THPT chuyên - Quảng Ninh)
Giải phương trình \(x^3-x^2-x\sqrt{x-1}-2=0\)
ĐKXĐ : x ≥ 1
<=> \(x^2\left(x-1\right)-x\sqrt{x-1}-2=0\)
Đặt \(x\sqrt{x-1}=t\)( t ≥ 0 )
pt <=> t2 - t - 2 = 0
<=> ( t + 1 )( t - 2 ) = 0
<=> t = -1 (ktm) hoặc t = 2 (tm)
=> \(x\sqrt{x-1}=2\)
<=> x2( x - 1 ) = 4 ( bình phương hai vế )
<=> x3 - x2 - 4 = 0
<=> x3 - 2x2 + x2 - 4 = 0
<=> x2( x - 2 ) + ( x - 2 )( x + 2 ) = 0
<=> ( x - 2 )( x2 + x + 2 ) = 0
<=> x - 2 = 0 hoặc x2 + x + 2 = 0
+) x - 2 = 0 <=> x = 2 (tm)
+) x2 + x + 2 = 0
Δ = b2 - 4ac = 1 - 8 = -7
Δ < 0 => vô nghiệm
Vậy pt có nghiệm x = 2
(Đề thi vào 10 - THPT chuyên - Hải Phòng)
Giải phương trình \(\sqrt{x+1}-\sqrt{x-7}=\sqrt{12-x}\)
CÂU HỎI TOÁN 9 - KẾT HỢP ÔN THI TUYỂN SINH VÀO 10 NĂM HỌC 2024 - 2025
Câu hỏi:
"a, Không sử dụng máy tính cầm tay, giải phương trình: 2x2 - 3x - 5 = 0
b, Để chuẩn bị cho kỳ thi tuyển sinh THPT vào 10 năm 2023, bạn Nam mua một số bút bi và một số bút chì. Bạn Nam đến một cửa hàng và nhìn thấy trên giá có thông báo nếu mua 5 bút bi xanh loại A và 3 bút chì loại 2B, bạn phải trả tổng cộng là 38500 đồng. Nếu mua 2 bút bi xanh loại A và 4 bút chì loại 2B, tổng cộng sẽ là 28000 đồng. Hãy giúp bạn Nam tìm giá của mỗi bút bi xanh loại A và mỗi bút chì loại 2B."
a: \(2x^2-3x-5=0\)
=>\(2x^2-5x+2x-5=0\)
=>\(\left(2x^2-5x\right)+\left(2x-5\right)=0\)
=>\(x\left(2x-5\right)+\left(2x-5\right)=0\)
=>\(\left(2x-5\right)\left(x+1\right)=0\)
=>\(\left[{}\begin{matrix}2x-5=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\x=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-1\end{matrix}\right.\)
vậy: \(S=\left\{\dfrac{5}{2};-1\right\}\)
b: Gọi giá tiền của mỗi cây bút bi xanh loại A và mỗi cây bút chì loại 2B lần lượt là a(đồng) và b(đồng)
(Điều kiện: a>0 và b>0)
Số tiền phải trả khi mua 5 cây bút bi xanh loại A là:
\(5\cdot a\left(đồng\right)\)
Số tiền phải trả khi mua 3 cây bút chì loại 2B là:
\(3\cdot b\left(đông\right)\)
Số tiền phải trả khi mua 2 cây bút bi xanh loại A là:
\(2\cdot a\left(đồng\right)\)
Số tiền phải trả khi mua 4 cây bút chì loại 2B là:
\(4\cdot b\left(đồng\right)\)
Khi mua 5 cây bút bi xanh loại A và 3 cây bút chì loại 2B thì phải trả 38500 đồng nên ta có: 5a+3b=38500(1)
Khi mua 2 cây bút bi xanh loại A và 4 cây bút chì loại 2B thì phải trả 28000 đồng nên ta có: 2a+4b=28000(2)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}5a+3b=38500\\2a+4b=28000\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5a+3b=38500\\a+2b=14000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a+3b=38500\\5a+10b=70000\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-7b=-31500\\a+2b=14000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4500\\a=14000-2b=14000-2\cdot4500=5000\end{matrix}\right.\left(nhận\right)\)
vậy: Giá tiền của mỗi cây bút bi xanh loại A là 5000 đồng
Giá tiền của mỗi cây bút chì loại 2B là 4500 đồng
(Đề thi tuyển sinh vào 10 - chuyên Tin - Hà Nội)
Giải phương trình \(\sqrt{5x-x^2}+2x^2-10x+6=0\)
\(\sqrt{5x-x^2}+2x^2-10x+6=0\)
ĐKXĐ : \(0\le x\le5\)
<=> \(\sqrt{5x-x^2}-2\left(5x-x^2\right)+6=0\)
Đặt \(\sqrt{5x-x^2}=t\)( t ≥ 0 ) ta được phương trình :\(t-2t^2+6=0\)(*)
Δ = b2 - 4ac = 1 + 48 = 49
Δ > 0 nên (*) có hai nghiệm phân biệt t1 = -3/2 (ktm) ; t2 = 2 (tm)
=> \(\sqrt{5x-x^2}=2\)
<=> 5x - x2 = 4 ( bình phương hai vế )
<=> x2 - 5x + 4 = 0 (1)
Dễ thấy (1) có a + b + c = 1 - 5 + 4 = 0 nên có hai nghiệm phân biệt x1 = 1 (tm) ; x2 = c/a = 4 (tm)
Vậy phương trình đã cho có hai nghiệm x1 = 1 ; x2 = 4
Giải phương trình
\(\frac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)
Đặt \(\sqrt{3x+1}=a\)
\(\Rightarrow\frac{a^2-1}{\sqrt{a^2+9}}=a-1\)
\(\Leftrightarrow\left(a-1\right)\left(\frac{a+1}{\sqrt{a^2+9}}-1\right)=0\)
Thử sức với đề thi môn Toán (không chuyên) trong kì thi tuyển sinh vào 10 chuyên của Sở GD&ĐT Lâm Đồng nhé các em.
câu: 7:
pt hoành độ giao điểm : \(x^2=3x+m< =>x^2-3x-m=0\)
\(\Delta=\left(-3\right)^2-4\left(-m\right)=9+4m\)
để (P) và(d) không có điểm chung\(< =>9+4m< 0< =>m< \dfrac{-9}{4}\)
Vậy ....
Câu 6
Áp dụng hệ thức: \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)
\(\Rightarrow\cos^2\alpha=1-0,6^2=0,64\)
\(\Rightarrow\cos\alpha=\pm0,8\)
Mà \(\alpha\) là góc nhọn nên \(\cos\alpha>0\) do đó \(\cos\alpha=0,8\)
Ta có: \(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{0,6}{0,8}=0,75\)
Khi đó \(B=5\cos\alpha-4\tan\alpha=5.0,8-4.0,75=1\)
câu 8:
có V(hình nón)\(=\dfrac{1}{3}\pi R^2h=96\pi=>R=\sqrt{\dfrac{96\pi}{\dfrac{1}{3}\pi.h}}=\sqrt{\dfrac{96}{\dfrac{1}{3}.8}}=6cm\)
\(=>l=\sqrt{h^2+R^2}=\sqrt{8^2+6^2}=10cm\)
\(=>Sxq=\pi Rl=\pi6.10=60\pi cm^2\)
Giải bất phương trình \(\frac{3x}{\sqrt{3x+10}}>\sqrt{3x+1}-1\)
Giải phương trình \(\dfrac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)
Giải phương trình:
`x(3-\sqrt{3x-1})=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1`
Chú Lâm cíu cháu :<
ĐKXĐ: ...
\(\Leftrightarrow3x-1-x\sqrt{3x-1}+x\sqrt{x+1}-\sqrt{\left(x+1\right)\left(3x-1\right)}=0\)
\(\Leftrightarrow\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)-\sqrt{x+1}\left(\sqrt{3x-1}-x\right)=0\)
\(\Leftrightarrow\left(\sqrt{3x-1}-\sqrt{x+1}\right)\left(\sqrt{3x-1}-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x-1}=\sqrt{x+1}\\\sqrt{3x-1}=x\end{matrix}\right.\)
\(\Leftrightarrow...\)
ĐKXĐ: x \(\ge\)\(\dfrac{1}{3}\)
pt\(\Leftrightarrow\)x(\(\sqrt{x+1}-\sqrt{3x-1}\))+\(\sqrt{3x-1}\left(\sqrt{3x-1}-\sqrt{x+1}\right)\)=0
\(\Leftrightarrow\)(\(\sqrt{x+1}-\sqrt{3x-1}\))(1-\(\sqrt{3x-1}\))=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{3x-1}\\1=\sqrt{3x-1}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{2}{3}\end{matrix}\right.\)(t/m x \(\ge\)\(\dfrac{1}{3}\))
Vậy.....................
\(x\left(3-\sqrt{3x-1}\right)=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)(Đk x≥\(\dfrac{1}{3}\))
ta có:\(x\left(3-\sqrt{3x-1}\right)\)
=\(3x-x\sqrt{3x-1}\)
=\(3x-1-x\sqrt{3x-1}+1\)
=\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)+1\)
Ta có \(\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)
=\(\sqrt{x^2+2x+1-2+2x^2}-x\sqrt{x+1}+1\)
=\(\sqrt{\left(x+1\right)\left(3x-1\right)}-x\sqrt{x+1}+1\)
=\(\sqrt{x+1}\left(\sqrt{3x-1}-x\right)+1\)
ta có \(x\left(3-\sqrt{3x-1}\right)=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)
⇔\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)+1\)=\(\sqrt{x+1}\left(\sqrt{3x-1}-x\right)+1\)
⇔\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)=\sqrt{x+1}\left(\sqrt{3x-1}-x\right)\)
⇔\(\sqrt{3x-1}=\sqrt{x+1}\)
⇔\(3x-1=x+1\)
⇔\(2x=2\)
⇔x=1(N)
Vậy x=1