pt ntn là pt vô số nghiệm
cho PT: 1, x+a/x+1+x-2/x=2, vs a là tham số. Xác định giá trị của a để PT vô nghiệm
2,cho PT: 4x-k+4=kx+k vs ẩn x và k là tham số. Hỏi vs giá trị nào củak thì PT có nghiệm duy nhất? Vô số nghiệm? Vô nghiệm ?
b1 \(\frac{x+a}{x+1}+\frac{x-2}{x}=2\)
ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
\(\Leftrightarrow x\left(x+a\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow x^2+ax+x^2-x-2=2x^2+2x\)
\(\Leftrightarrow ax-3x=2\)
\(\Leftrightarrow\left(a-3\right)x=2\)
để pt vô nghiệm thì a-3=0 <=>a=3 thì pt vô nghiệm
2,\(4x-k+4=kx+k\)
\(\Leftrightarrow4x-kx=2k-4\)
\(\Leftrightarrow\left(4-k\right)x=2k-4\)
để pt có nghiệm duy nhất thì 4-k khác 0 <=> k khác 4 thì pt có nghiệm duy nhất là\(\frac{2k-4}{4-k}\)
pt vô nghiệm thì 4-k=0 <=.>k=4
cho phương trình ( m^2-m)x +m^2 -1=0 (m là tham số) a) giải pt khi m=2 b) tìm m để pt có nghiệm x=-1 c) tìm m để pt có nghiệm , vô nghiệm, vô số nghiệm
a.
Khi \(m=2\) pt trở thành:
\(2x+3=0\Rightarrow x=-\dfrac{3}{2}\)
b.
Để pt có nghiệm \(x=-1\)
\(\Rightarrow\left(m^2-m\right).\left(-1\right)+m^2-1=0\)
\(\Leftrightarrow-m^2+m+m^2-1=0\)
\(\Leftrightarrow m-1=0\)
\(\Leftrightarrow m=1\)
c.
Pt tương đương:
\(\left(m^2-m\right)x=-\left(m^2-1\right)\)
\(\Leftrightarrow m\left(m-1\right)x=-\left(m-1\right)\left(m+1\right)\)
Pt vô nghiệm khi:
\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow m=0\)
\(\Rightarrow\) pt có nghiệm khi \(m\ne0\)
Pt có vô số nghiệm khi:
\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)=0\end{matrix}\right.\) \(\Leftrightarrow m=1\)
Lời giải:
a. Khi $m=2$ thì pt trở thành:
$2x+3=0\Leftrightarrow x=-\frac{3}{2}$
b. Để pt có nghiệm $x=-1$ thì:
$(m^2-m).(-1)+m^2-1=0$
$\Leftrightarrow m-1=0\Leftrightarrow m=1$
c.
PT $\Leftrightarrow (m^2-m)x=1-m^2$
Để pt vô nghiệm thì: \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m(m-1)=0\\ (1-m)(1+m)\neq 0\end{matrix}\right.\)
\(\Leftrightarrow m=0\)
PT có vô số nghiệm khi \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2= 0\end{matrix}\right.\Leftrightarrow m=1\)
Để PT có nghiệm thì: $m\neq 0$
Bài 1: Cho pt: 2(m-1) x + 3 = 2m - 5 (1)
a) tìm m để pt (1) là pt bậc nhất một ẩn
b) Tìm m để pt vô nghiệm
c) Tìm m để pt có nghiệm duy nhất
d) Tìm m để pt vô số nghiệm %3D
e) Với giá trị nào của m thì pt (1) tương đương với pt 2x+5 = 3(x+2)-1
giúp mk vs ạ, mk cam tạ
2(m-1)x+3=2m-5
=>x(2m-2)=2m-5-3=2m-8
a: (1) là phương trình bậc nhất một ẩn thì m-1<>0
=>m<>1
b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0
=>m=1
c: Để (1) có nghiệm duy nhất thì m-1<>0
=>m<>1
d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0
=>Ko có m thỏa mãn
e: 2x+5=3(x+2)-1
=>3x+6-1=2x+5
=>x=0
Khi x=0 thì (1) sẽ là 2m-8=0
=>m=4
cho phương trình \(m^2\)x +6= 4x+3m a) giải pt khi m=3 b) tìm m để pt có nghiệm x= 1,5 c) tìm m để pt có nghiệm vô nghiệm vô số nghiệm d) tìm m nguyên để pt trên có nghiệm
a) Thay m=3 vào pt ta được:
\(9x+6=4x+9\Leftrightarrow x=\dfrac{3}{5}\)
Vậy...
b) Thay x=-1,5 vào pt ta được:
\(m^2\left(-1,5\right)+6=4.\left(-1,5\right)+3m\)
\(\Leftrightarrow\dfrac{-3}{2}m^2-3m+12=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)
Vậy...
c)Pt \(\Leftrightarrow x\left(m^2-4\right)=3m-6\)
Để pt vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}3m-6\ne0\\m^2-4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m=\pm2\end{matrix}\right.\)\(\Rightarrow m=-2\)
Để pt có vô số nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}3m-6=0\\m^2-4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(\Rightarrow m=2\)
d)Để pt có nghiệm \(\Leftrightarrow m^2-4\ne0\Leftrightarrow m\ne\pm2\)
\(\Rightarrow x=\dfrac{3m-6}{m^2-4}=\dfrac{3\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{3}{m+2}\)
Để \(x\in Z\Leftrightarrow\dfrac{3}{m+2}\in Z\)
Vì \(m\in Z\Leftrightarrow m+2\in Z\).Để \(\dfrac{3}{m+2}\in Z\Leftrightarrow m+2\inƯ\left(3\right)=\left\{-1;-3;1;3\right\}\)
\(\Leftrightarrow m=\left\{-3;-5;-1;1\right\}\) (tm)
Vậy...
\(\hept{\begin{cases}3mx+y=2m\\-3x-my=-1+3m\end{cases}}\)(m là tham số).tìm m để
a) hệ pt có nghiệm phân biệt
b) hệ pt vô nghiệm
c) hệ pt có vô số nghiệm
Cho pt : x2 - 2(m-3) x + m2 - 1 = 0 ( m là tham số ). Tìm m để pt : a) vô nghiêm b) có nghiệm c) có nghiệm kép. Tìm nghiệm kép d) có 2 nghiệm phân biệt
Ta có: \(\Delta=4\left(m-3\right)^2-4.\left(m^2-1\right)\)
a. Để phương trình vô nghiệm thì \(\Delta< 0\Leftrightarrow\left(m-3\right)^2< m^2-1\Leftrightarrow m^2-6m+9< m^2-1\Leftrightarrow6m>10\Leftrightarrow m>\dfrac{10}{6}=\dfrac{5}{3}\)
b. Để phương trình có nghiệm thì:
\(\Delta\ge0\Leftrightarrow\left(m-3\right)^2\ge m^2-1\Leftrightarrow m^2-6m+9\ge m^2-1\Leftrightarrow6m\le10\Leftrightarrow m\le\dfrac{10}{6}=\dfrac{5}{3}\)
c. Để phương trình có nghiệm kép thì:
\(\Delta=0\Leftrightarrow\left(m-3\right)^2=m^2-1\Leftrightarrow m^2-6m+9=m^2-1\Leftrightarrow6m=10\Leftrightarrow m=\dfrac{10}{6}=\dfrac{5}{3}\)
Nghiệm kép của phương trình là: \(\dfrac{-b}{2a}=\dfrac{2\left(m-3\right)}{2.1}=\dfrac{2\left(\dfrac{5}{3}-3\right)}{2}=-\dfrac{4}{3}\)
d. Để phương trình có nghiệm phân biệt thì:
\(\Delta>0\Leftrightarrow\left(m-3\right)^2>m^2-1\Leftrightarrow m^2-6m+9>m^2-1\Leftrightarrow6m< 10\Leftrightarrow m< \dfrac{10}{6}=\dfrac{5}{3}\)
a, Để pt vô nghiệm
\(\Delta'=\left(m-3\right)^2-\left(m^2-1\right)=-6m+9+1=-6m+10< 0\Leftrightarrow m>\dfrac{5}{3}\)
b, Để pt có nghiệm
\(\Delta'=-6m+10\ge0\Leftrightarrow m\le\dfrac{5}{3}\)
c, Để pt có nghiệm kép
\(\Delta'=-6m+10=0\Leftrightarrow m=\dfrac{5}{3}\)
\(x_1=x_2=\dfrac{2\left(m-3\right)}{2}=m-3\)
d, Để pt có 2 nghiệm pb
\(\Delta=-6m+10>0\Leftrightarrow m< \dfrac{5}{3}\)
Cho hệ pt: ax+ y= 2a X-a= 1-ay 1/ a=2 giải hệ pt 2/ tìm a để a/ hệ có 1 nghiệm duy nhất, vô số nghiệm, vô nghiệm B/ hệ có nghiệm nguyên
a: \(\left\{{}\begin{matrix}ax+y=2a\\x-a=1-ay\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}ax+y=2a\\x+ay=a+1\end{matrix}\right.\)
Khi a=2 thì hệ sẽ là \(\left\{{}\begin{matrix}2x+y=4\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=6\end{matrix}\right.\)
=>-3y=-2 và x+2y=3
=>y=2/3 và x=3-2y=3-4/3=5/3
2:
a: Để hệ có 1 nghiệm duy nhất thì \(\dfrac{a}{1}< >\dfrac{1}{a}\)
=>a^2<>1
=>a<>1 và a<>-1
Để hệ có vô số nghiệm thì \(\dfrac{a}{1}=\dfrac{1}{a}=\dfrac{2a}{a+1}\)
=>a^2=1 và a^2+a=2a
=>a=1
Để hệ vô nghiệm thì \(\dfrac{a}{1}=\dfrac{1}{a}< >\dfrac{2a}{a+1}\)
=>a^2=1 và a^2+a<>2a
=>a=-1
Cho phương trình: 4x – 2 = k2 x + k ( 1) ( Với ẩn x với k là tham số )
a) Với giá trị nào của k thì PT (1) có nghiệm x = 1
b)Với giá trị nào của k thì PT (1) có nghiệm duy nhất? có vô số nghiệm? vô nghiệm ?
giúp mình được không, mình đang cần gấp
2:Khi nào hệ pt có nghiệm duy nhất?Vô nghiệm?Vô số nghiệm?
(mỗi trường hợp cho 1 VD)
3:Lấy 3 vd về hàm số bậc nhất?Lấy 3 vd về hàm số bậc 2?
4:Viết công thức nghiệm giải pt bậc 2
5:Nếu các bước giải bài toán = cách lập pt hoặc hệ pt
6:Phát biểu định lý Vi-ét và cách nhẩm nghiệm
7:Nêu định nghĩa,tính chất,dấu hiệu nhận biết về tứ giác nội tiếp
8:Nêu cách chứng minh đẳng thức tích
9:Nêu cách chứng minh tứ giác nội tiếp
9:Chứng minh cho bốn đỉnh của tứ giác cách đều một điểm nào đó
Chứng minh tứ giác có tổng 2 góc đối bằng 180°
Chứng minh từ hai đỉnh cùng kề một cạnh cùng nhìn một cạnh dưới hai góc bằng nhau. Nếu một tứ giác có tổng số đo hai góc đối bằng thì tứ giác đó nội tiếp được trong một đường tròn.
7:dấu hiệu :Tứ giác có tổng hai góc đối bằng 180∘ . - Tứ giác có góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối với đỉnh đó. - Tứ giác có bốn đỉnh cách đều một điểm (mà có thể xác định được). Điểm đó là tâm đường tròn ngoại tiếp tứ giác.
định nghĩa: Trong Hình học phẳng, một tứ giác nội tiếp là một tứ giác mà cả bốn đỉnh đều nằm trên một đường tròn. Đường tròn này được gọi là đường tròn ngoại tiếp, và các đỉnh của tứ giác được gọi là đồng viên. Tâm và bán kính đường tròn lần lượt được gọi là tâm đường tròn ngoại tiếp và bán kính đường tròn ngoại tiếp.
tính chất: Trong tứ giác nội tiếp, cặp hai tam giác đối nhau qua giao hai đường chéo đồng dạng với nhau. trong đó E và F lần lượt là giao điểm hai cặp cạnh đối của tứ giác. Với một bộ bốn cạnh là bốn cạnh một tứ giác nội tiếp, có thể thay đổi thứ tự các cạnh theo một trật tự bất kỳ
6: viet thuận:
Cho phương trình bậc 2 một ẩn: ax2+bx+c=0 (a≠0) (*) có 2 nghiệm x1 và x2. Khi đó 2 nghiệm này thỏa mãn hệ thức sau:
Hệ quả: Dựa vào hệ thức Viet khi phương trình bậc 2 một ẩn có nghiệm, ta có thể nhẩm trực tiếp nghiệm của phương trình trong một số trường hợp đặc biệt:
Nếu a+b+c=0 thì (*) có 1 nghiệm x1=1 và x2=c/aNếu a-b+c=0 thì (*) có nghiệm x1=-1 và x2=-c/aviet đảoGiả sử hai số thực x1 và x2 thỏa mãn hệ thức:
phép nhẩm: “Phân tích hệ số thành tích và thành tổng”. Trong hai phép nhẩm đó, bạn nên nhẩm hệ số trước rồi kết hợp với để tìm ra hai số thỏa mãn tích bằng và tổng bằng .