Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đoàn mạnh  trí
Xem chi tiết
Hoàng Thị Minh Phương
Xem chi tiết
Hoàng Thị Minh Phương
12 tháng 11 2016 lúc 22:58

xin lỗi, chỉ có 1 trg hợp thôi

 

Trang
13 tháng 11 2016 lúc 10:22

hình như bạn chép sai đề thì phải

Nguyễn Huyền Trang
Xem chi tiết
Jenny phạm
Xem chi tiết

TH1:x+y+z=0 \(\Rightarrow x=y=z=0\)

TH2:x+y+z\(\ne0\)

Áp dụng t/c .............

Được x+y+z=1/2

Biến đổi ta được \(x=\frac{1}{2};y=\frac{1}{2};z=-\frac{1}{2}\)

Nguyễn Bảo Nhi
Xem chi tiết
Bùi Lê Trà My
24 tháng 5 2016 lúc 16:54

xin lỗi mk ấn nhầm

  Dựa vào tính chất của dãy tỉ số bằng nhau ta có   2=1/ x+y+z => x+y+z= 1/2

 Thay vào ta có   y+z+2=2x và y+z=1/2-x

                      => 1/2-x+2=2x => 5/2-x=2x   => 3x=5/2

                      => x=5/6

 Tương tự tìm y và z

  

TFboys_Lê Phương Thảo
24 tháng 5 2016 lúc 16:34

\(\frac{\left(y+z+2\right)+\left(x+z+3\right)+\left(x+y-5\right)}{x+y+z}=\frac{1}{x+y+z}\)

\(\frac{y+y+z+z+2+3-5+x+x}{x+y+z}=\frac{2y+2z+0+2x}{x+y+z}\)

\(\frac{2+2+2+y.z.x}{x+y+z}=\frac{6+yzx}{x+y+z}\)

Bùi Lê Trà My
24 tháng 5 2016 lúc 16:48

ta có   1

         

tống thị quỳnh
Xem chi tiết
Trà My
30 tháng 5 2017 lúc 23:18

\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)

Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)

tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)

=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)

Dấu "=" xảy ra khi x=y=z=4

Vậy minM=6 khi x=y=z=4

Trà My
30 tháng 5 2017 lúc 22:56

b1: Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+y+y}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

=>minP=1 <=> x=y=z=2/3

Nguyễn Ngọc Châu Anh
Xem chi tiết
Gia Huy
19 tháng 6 2023 lúc 22:12

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

ariesgirl
Xem chi tiết
Tran Le Khanh Linh
31 tháng 7 2020 lúc 20:19

ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+x}{z}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Khách vãng lai đã xóa
Phan Nghĩa
31 tháng 7 2020 lúc 20:22

a,Sử dụng tính chất của dãy tỉ số bằng nhau

 \(\frac{x+y+2020}{z}=\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{x+y+y+z+z+x}{x+y+z}=2\)

\(< =>\frac{2}{x+y+z}=2< =>x+y+z=1\)

Khách vãng lai đã xóa
Khánh Ngọc
31 tháng 7 2020 lúc 22:14

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x+y+2020}{z}=\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{x+y+2020+y+z-2021+z+x+1}{x+y+z}\)

\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Mà  \(\frac{x+y+2020}{z}=\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{2}{x+y+z}\)

nên \(\frac{2}{x+y+z}=2\)

\(\Rightarrow x+y+z=1\)

Khách vãng lai đã xóa
Harry James Potter
Xem chi tiết