giai phuong trinh : \(x-10=\sqrt{x}+2\)
cho phuong trinh:\(\dfrac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\dfrac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
a/tim dieu kien cua x de phuong trinh co nghia
b/giai phuong trinh
a: ĐKXĐ: x>=0
b: \(\Leftrightarrow\dfrac{2\sqrt{2}-2\sqrt{2-\sqrt{x}}+\sqrt{2x}-\sqrt{x\left(2-\sqrt{x}\right)}+2\sqrt{2}+2\sqrt{2+\sqrt{x}}-\sqrt{2x}-\sqrt{x\left(2+\sqrt{x}\right)}}{2-2+\sqrt{x}}=\sqrt{2}\)
\(\Leftrightarrow4\sqrt{2}-2\sqrt{x\left(\sqrt{x}+2\right)}=\sqrt{2x}\)
\(\Leftrightarrow\sqrt{4x\left(\sqrt{x}+2\right)}=4\sqrt{2}-\sqrt{2x}\)
\(\Leftrightarrow4x\left(\sqrt{x}+2\right)=32-16\sqrt{x}+2x\)
\(\Leftrightarrow4x\sqrt{x}+8x-32+16\sqrt{x}-2x=0\)
=>\(x\in\left\{0;1.2996\right\}\)
\(x^2-3x+\sqrt{x+5}-\sqrt{10-4x}=-2\)
Giai phuong trinh
khong vo nghiem dau ban a, nham nghiem thi no ra x=1 do ban
Cho phuong trinh : x+m=\(\sqrt{x+1}\) (1)
1/giai phuong trinh (1) khi m=1
2/giai va bien luan phuong trinh (1)theo m
1; Khi m=1 thì pt sẽ là \(\sqrt{x+1}=x+1\)
=>(x+1)^2=(x+1)
=>x(x+1)=0
=>x=0hoặc x=-1
2: \(\Leftrightarrow x+1=\left(x+m\right)^2\)
=>x^2+2mx+m^2-x-1=0
=>x^2+x(2m-1)+m^2-1=0
Δ=(2m-1)^2-4(m^2-1)
=4m^2-4m+1-4m^2+4
=-4m+5
Để pt có 2 nghiệm pb thì -4m+5>0
=>-4m>-5
=>m<5/4
Để pt có nghiệm kép thì 5-4m=0
=>m=5/4
Để pt vô nghiệm thì -4m+5<0
=>m>5/4
giai phuong trinh : \(5\sqrt{x-2}=10+\sqrt{9x+18}\)
giai phuong trinh
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
ĐK: \(x\ge-2\)
\(pt\Leftrightarrow\frac{x+5-\left(x+2\right)}{\sqrt{x+5}+\sqrt{x+2}}.\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)=3\)
\(\Leftrightarrow3.\frac{1+\sqrt{x+2}.\sqrt{x+5}}{\sqrt{x+2}+\sqrt{x+5}}=3\)
\(\Leftrightarrow1+\sqrt{x+2}\sqrt{x+5}=\sqrt{x+2}+\sqrt{x+5}\)
\(\Leftrightarrow\left(\sqrt{x+2}-1\right)\left(\sqrt{x+5}-1\right)=0\)
\(\Leftrightarrow\sqrt{x+2}=1\text{ hoặc }\sqrt{x+5}=1\)
\(\Leftrightarrow x=-1\text{ (nhận) hoặc }x=-4\text{ (loại)}\)
Vậy tập nghiệm của pt là: \(S=\left\{1\right\}\)
Giai phuong trinh
\(\sqrt{x-\sqrt{x-2}}+\sqrt{x+\sqrt{x-2}}=3\)
\(\sqrt{x-\sqrt{x-2}}+\sqrt{x+\sqrt{x-2}}=3\)
\(\Leftrightarrow2x+2\sqrt{\left(x-\sqrt{2-x}\right)\left(x+\sqrt{x-2}\right)}=9\)
\(\Leftrightarrow2\sqrt{\left(x-\sqrt{x-2}\right)\left(x+\sqrt{x+2}\right)}=9-2x\)
\(\Leftrightarrow4\left(x-\sqrt{x-2}\right)\left(x+\sqrt{x-2}\right)=\left(9-2x\right)^2\)
\(\Leftrightarrow4x^2-4x+8=81-36x+4x^2\)
\(\Leftrightarrow-4x+8=81-36x\)
\(\Leftrightarrow-4x=81-36x-8\)
\(\Leftrightarrow-4x=-36x+73\)
\(\Leftrightarrow-4x+36x=73\)
\(\Leftrightarrow32x=73\)
\(\Leftrightarrow x=\frac{73}{32}\)
Vậy: nghiệm phương trình là: \(\left\{\frac{73}{32}\right\}\)
Lỗi sai ngu người nhất của Chihiro.Quên viết ĐKXĐ ak em
\(\sqrt{x-\sqrt{x-2}}+\sqrt{x+\sqrt{x-2}}=3\)
\(ĐKXĐ:x\ge2\)
Bình phương 2 vế của pt ta được
\(2x+2\sqrt{\left(x-\sqrt{x-2}\right)\left(x+\sqrt{x-2}\right)}=9\)
\(\Leftrightarrow2\sqrt{x^2-x+2}=9-2x\)
\(\Leftrightarrow\hept{\begin{cases}9-2x\ge0\Leftrightarrow\frac{9}{2}\ge x\\4\left(x^2-x+2\right)=81-36x+4x^2\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow32x-73=0\Leftrightarrow x=\frac{73}{32}\left(tmDK\right)\)
Vậy \(S=\left\{\frac{73}{32}\right\}\)
p/s:học hỏi đi con.
Không thích thì không ghi được không ạ? :))
giai phuong trinh \(x^2+\sqrt{2-x}=2x^2\sqrt{2-x}\)
giai he phuong trinh
\(\hept{\begin{cases}x^2-4\sqrt{3x-2}+10=2y\\y^2-6\sqrt{4y-3}+11=x\end{cases}}\)
\(\sqrt{x-1+2\sqrt{x-2}}+\sqrt{x-1-2\sqrt{x-2}}giai~phuong\cdot trinh'\)