Cho tam giác ABC cân tại A có đường cao AH=6cm, đường cao BK=5cm. Tính BC
Cho tam giác ABC cân tại A có đường cao AH=6cm và đường cao BK=5cm. Tính BC
Áp dụng công thức tính diện tích tam giác ta có:
\(S_{ABC}\) =\(\frac{1}{2}\).AH.BC= \(\frac{1}{2}\).BK.AC
<=> \(\frac{1}{2}\).6.BC= \(\frac{1}{2}\).5.AC
<=> AC= \(\frac{6.BC}{5}\)(1)
Mà trong tam giác ABC cân tại A thì đường cao AH cũng là đường trung tuyến => HC=\(\frac{BC}{2}\)(2)
ÁP dụng định lý pytago vào trong tam giác vuông AHC ta có:
\(AC^2\)=\(AH^2\)+\(HC^2\)
từ (1) và (2) ta có:
<=>\(\left(\frac{6BC}{5}\right)^2\)=\(6^2\)+\(\left(\frac{BC}{2}\right)^2\)
<=>\(\frac{36BC^2}{25}\)-\(\frac{BC^2}{4}\)=36
<=>\(\frac{119BC^2}{100}\)=36
<=> \(BC^2\)=\(\frac{3600}{119}\)
<=> BC=\(\sqrt{\frac{3600}{119}}\)=\(\frac{60}{\sqrt{119}}\)
Cho tam giác ABC cân tại A, đường cao AH
a) Chứng minh : tam giác AHB=tam giác AHC
b) Chứng minh : AH là đường phân giác của góc BAC
c) Biết AB = 5cm, BC= 6cm. Tính AH
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của \(\widehat{BAC}\)
c: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>HB=HC=BC/2=3cm
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2+3^2=5^2\)
=>\(HA^2=25-9=16\)
=>HA=4(cm)
Cho tam giác ABC cân tại A, đường cao AH=5cm, đường cao BH=6cm(H\(\in\)BC, M\(\in\)AC). Tính BC
cho tam giác ABC cân tại A có BC = 6cm, đường cao AH = 4cm. tính đường cao ứng với cạnh bên
Cho tam giác ABC vuông cân tại A, đường cao AH. Biết AB = 5cm, BC = 6cm. a/ Tính các góc và các cạnh còn lại của tam giác ABC. b/ Dựng đường tròn tâm (O) ngoại tiếp tam giác ABC, tính độ dài bán kính của đường tròn tâm O.
Tam giác ABC cân A đường cao AH , AB=5cm BC =6cm
a. Tính AH
b. G trọng tâm tam giác ABC Kẻ đường thẳng d đi qua c vuông góc BC Tia BG cắt d tại E CM AG=CE và góc AEB > góc ABE
Tam giác ABC có chiều cao AH=5cm và đường cao BK=6cm. Tổng độ dài hai cạnh AC và BC là 22cm. Tính độ dài mỗi cạnh BC,AC.
dựa vào công thức diện tích nên ah x bc = bk x ac
>> 5 x bc = 6 x (22-bc) = 132 - 6 x bc
>> 132 - 11 x bc = 0 >> bc = 12 >> ac = 10
1) Cho tam giác ABC cân tại A có AH là đường cao
a) Biết AB=8cm, BC=4cm. Tính diện tích tam giác ABC
b) Gọi N là trung điểm của AC. Tứ giác ANHB là hình gì?
2) Cho tam giác ABC cân tại A
a) Biết AB=10cm, BC=5cm. Đường trung tuyến AH. Tính diện tích tam giác ABC
b) Gọi M, N lần lượt là trung điểm của AB,AC. Tứ giác BMNC là hình gì?
Mn giúp mik vs bài này mik cần gấp!
Bài 2:
a: H là trung điểm của BC
nên HB=HC=2,5(cm)
\(\Leftrightarrow AH=\dfrac{5\sqrt{15}}{2}\left(cm\right)\)
\(S=\dfrac{\dfrac{5\sqrt{15}}{2}\cdot5}{2}=\dfrac{25\sqrt{15}}{4}\left(cm^2\right)\)
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
cho tam giác ABC cân tại A có AH là đường cao biết BC=6cm .tính BH