Cho ΔABC có M là trung điểm của BC . Từ M kẻ các đường thẳng song song với AB,AC cắt AC,AB lần lượt tại N,P. Chứng minh:
a)PA=PB
b)PN song song với BC
Cho tam giác ABC có M là trung điểm BC. Từ M kẻ các đường thẳng song song với AB, AC cắt AC, AB lần lượt tại N, P. Chứng minh:PA = PB, PN song song với BC
Xét ΔABC có
M là trung điểm của BC
MP//AC
Do đó: P là trung điểm của AB
hay PA=PB
Xét ΔABC có
M là trung điểm của BC
MN//AB
Do đó: N là trung điểm của AC
Xét ΔABC có
P là trung điểm của AB
N là trung điểm của AC
DO đó: PN là đường trung bình
=>PN//BC
Cho tam giác cân ABC ( AB = AC) . Gọi M,N,P lần lượt là các trung điểm của AB , AC , BC . Qua A kẻ đường thẳng song song với BC cắt tia PN tại Q. Chứng minh :
Tứ giác PMAQ là hình thang
Xét \(\Delta ABC:\)N là trung điểm AC, P là trung điểm BC
\(\Rightarrow NP\)là đường trung bình \(\Delta ABC\)
\(\Rightarrow NP\text{//}AB\)
\(\Rightarrow PQ\text{//}AM\)( Vì \(M\in AB;N\in PQ\))
\(\Rightarrow\)Tứ giác PMAQ là hình thang
Vậy...
Cho tam giác ABC. M là trung điểm của AB, từ M kẻ đường thẳng song song với BC cắt AC tại N, từ N kẻ đường thẳng song song với AB cắt BC tại I. Chứng minh: BM = NI, N là trung điểm của AC, I là trung điểm của BC, MN = 1/2BC
(Tự vẽ hình)
Do BM//NI, MN//BI nên MNIB là hình bình hành
=> BM=IN (2 cạnh đối) (1)
Trong tam giác ABC, do M trung điểm AB, MN//BC => N trung điểm AC (2)
Do MA=MB,NA=NC nên MN là đường trung bình tam giác ABC => MN=1/2 BC (4)
CMTT, ta có I trung điểm BC (3)
Vậy ta có tất cả đpcm
Hình:
Cho ΔABC cân tại A có AM là đường phân giác của góc A(M ∈ BC), từ M kẽ các đường thẳng song song với ab và ac, các đường thẳng này cắt AB tại E và cắt AC tại N.
a)Qua A kẻ đường thẳng song song với BC và cắt MN tại D . Chứng minh tứ giác ADMB là hình bình hành
b)Chứng minh tứ giác ADCM là hình chữ nhật
Cho tam giác ABC, trên tia đối của tia BC lấy điểm M sao cho MB = AB, trên tia đối của tia CB lấy điểm N sao cho NC = AC. Qua M kẻ đường thẳng song song với AB. Qua N kẻ đường thẳng song song với AC. Hai đường thẳng đó cắt nhau tại P. Chứng minh:
a) MA, NA lần lượt là tia phân giác của P M B ^ , P N C ^
b) Tia PA cắt BC tại K. Chứng minh PA là tia phân giác của M P N ^ , từ đó suy ra AK là tia phân giác của B A C ^
Cho DABC, gọi M là trung điểm của AB, qua điểm M kẻ đường thẳng song song với BC cắt AC tại N, qua điểm N kẻ đường thẳng song song với AB cắt BC tại Q.
a. Chứng minh: DMNQ = DQBM
b. Chứng minh: AM = NQ
c. Chứng minh: N là trung điểm của AC
a: Xét ΔMNQ va ΔQBM có
góc QMN=goc MQB
QM chung
góc MQN=góc QMB
=>ΔMNQ=ΔQBM
b: Xét tứ giác MNQB có
MN//QB
MB//NQ
=>MNQB là hình bình hành
=>NQ=MB=AM
c: Xét ΔABC có
M là trung điểm của AB
MN//BC
=>N là trug điểm của AC
Cho tam giac ABC có đường thẳng d đi qua B. Từ diểm E bất kì trên AC kẻ đường thẳng song song AB AC lần lượt cắt d tại M và N. Gọi D là giao điểm của ME và BC. Đường thẳng NE cắt AB và MC lần lượt tại F và K. Chứng minh:
a)AFN \(\sim\) MDC
b)AN//MK
Cho tam giacs ABC, M,N lần lượt là trung điểm của AB,AC. Từ c kẻ đường thẳng song song với AB cắt MN tại D .
Chứng minh
a) Tam giác AMN=CND
b) MN//BC
a) Xét ΔAMN và ΔCND có
\(\widehat{MAN}=\widehat{NCD}\)(hai góc so le trong, AB//CD)
AN=NC(N là trung điểm của AC)
\(\widehat{ANM}=\widehat{CND}\)(hai góc đối đỉnh)
Do đó: ΔAMN=ΔCND(g-c-g)
b) Xét ΔABC có
M là trung điểm của BA(gt)
N là trung điểm của AC(Gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra:MN//BC
Cho tam giacs ABC, M,N lần lượt là trung điểm của AB,AC. Từ c kẻ đường thẳng song song với AB cắt MN tại D .
Chứng minh
a) Tam giác AMN=CND
b) MN//BC
a) Xét ΔAMN và ΔCND có
\(\widehat{MAN}=\widehat{NCD}\)(hai góc so le trong, AB//CD)
AN=NC(N là trung điểm của AC)
\(\widehat{ANM}=\widehat{CND}\)(hai góc đối đỉnh)
Do đó: ΔAMN=ΔCND(g-c-g)
b) Xét ΔABC có
M là trung điểm của BA(gt)
N là trung điểm của AC(Gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra:MN//BC