Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Hà Phương
Xem chi tiết
Phan Thanh Tịnh
18 tháng 9 2016 lúc 21:39

\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{\left(u+2\right)-\left(u-2\right)}{\left(v+3\right)-\left(v-3\right)}=\frac{4}{6}=\frac{2}{3}\)

\(\Rightarrow\frac{u+2}{v+3}=\frac{2}{3}=\frac{u+2-2}{v+3-3}=\frac{u}{v}\Rightarrow\frac{u}{v}=\frac{2}{3}\)

Cách của bạn kia là cách chứng minh tương đương.Mình nghĩ nó ko hay cho lắm vì phải dựa vào đpcm mà suy luận.

Sherlockichi Kazukosho
9 tháng 8 2016 lúc 15:57

Mình lí luận ngược nha :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{u}{2}=\frac{v}{3}\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\Rightarrow\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

Nguyễn Thị Lan Anh
Xem chi tiết
Nguyễn Huy Tú
11 tháng 1 2017 lúc 18:00

Giải:

Ta có: \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\Rightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{u}{v}=\frac{2}{3}\)

\(\Rightarrow\frac{u}{v}=\frac{2}{3}\Rightarrow\frac{u}{2}=\frac{v}{3}\)

Vậy \(\frac{u}{2}=\frac{v}{3}\)

Nguyễn Thị Lan Anh
11 tháng 1 2017 lúc 17:46

thừa cái dòng chữ cuối cùng nhá

nguyễn lê thị sương
Xem chi tiết
Nhók khờ cuồng Thiên Thi...
Xem chi tiết
Trịnh Lan Anh
27 tháng 10 2016 lúc 10:20

Đại số lớp 7

Trịnh Lan Anh
27 tháng 10 2016 lúc 10:16

Hình như đề có bị lộn thì phải

Trịnh Lan Anh
27 tháng 10 2016 lúc 10:19

Nếu Cm u/2=v/3 thì mik làm đcĐại số lớp 7

nguyen thi bao tien
Xem chi tiết
Tran Le Khanh Linh
11 tháng 8 2020 lúc 16:33

mình có sửa lại đề 1 chút!

đặt \(T=\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)

đặt \(u=a^4;v=b^6\)(a,b>0) ta có

\(T=\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}=\frac{a^4-8a^2b^2+4b^2}{a^2-2b^2+2ab}+3b^2\)

vậy \(T=\frac{a^4-8a^2b^2+4b^4}{a^2-2b^2+2ab}+3b^2=\frac{a^4-5a^2b^2-2b^4+6ab^3}{a^2-2b^2+2ab}=a^2-2ab+b^2\)

từ đó suy ra \(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=\left|\sqrt[4]{u}-\sqrt[6]{v}\right|+\sqrt[6]{v}\)

vì \(u^3\ge v^2\)nên \(\left|\sqrt[4]{u}-\sqrt[6]{v}\right|+\sqrt[6]{v}=\sqrt[4]{u}\)

\(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)

với u=1 ta có \(T=\sqrt{\frac{1-8\sqrt[6]{v^2}+4\sqrt[3]{v^2}}{1-2\sqrt[3]{v}+2\sqrt[6]{v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}\)

nếu \(1-2\sqrt[3]{v}+2\sqrt[6]{v}=0\)thì \(\sqrt[3]{v}=\frac{3+1}{2}>0\)

do \(v^2>1=u^3\), mâu thuẫn suy ra \(1-2\sqrt[3]{v}+2\sqrt[6]{v}\ne0\)

tóm lại với \(u^3\ge v^2\)và u,v\(\inℚ^+\)để \(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)cần và đủ là u=1 và v<1, v\(\inℚ^+\)được lấy tùy ý

Khách vãng lai đã xóa
Fan RUNNING MAN
Xem chi tiết
Trà My
19 tháng 5 2016 lúc 9:40

\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

\(\Rightarrow\left(u+2\right).\left(v-3\right)=\left(u-2\right).\left(v+3\right)\)

\(\Rightarrow u\left(v-3\right)+2\left(v-3\right)=u\left(v+3\right)-2\left(v+3\right)\)

\(\Rightarrow uv-3u+2v-6=uv+3u-2v-6\Rightarrow uv-3u+2v=uv+3u-2v\)

\(\Rightarrow-3u+2v=3u-2v\Rightarrow2v-3u=3u-2v\Rightarrow2v+2v=3u+3u\Rightarrow4v=6u\Rightarrow\frac{u}{3}=\frac{v}{2}\)

Anh trai của dòng họ
17 tháng 1 2017 lúc 19:50

cm như bạn trên là  đúng đấy bạn ạ

Đại gia không tiền
Xem chi tiết
Kurosaki Akatsu
18 tháng 7 2017 lúc 20:38

Có : \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

\(\Leftrightarrow\frac{u+2}{v+3}=\frac{u-2}{v-3}\)

Theo tính chất dãy tỉ số , có :

\(\frac{u+2}{v+3}=\frac{u-2}{v-3}=\frac{u+2+u-2}{v+3+v-3}=\frac{u+2-u+2}{v+3-v+3}\)

\(\Rightarrow\frac{2u}{2v}=\frac{4}{6}\)

\(\Leftrightarrow\frac{u}{v}=\frac{2}{3}\Leftrightarrow\frac{u}{2}=\frac{v}{3}\)

HKT_Bí Mật
18 tháng 7 2017 lúc 20:41

Ta có:

  \(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)

<=> (u+2).(v-3)=(u-2).(v+3)

<=>uv+2v-3u-6=uv-2v+3u-6

<=>2v-3u=3u-2v

<=>2v+2v=3u+3u

<=>4v=6u

<=>2v=3u

<=>\(\frac{u}{2}=\frac{v}{3}\)

An
18 tháng 7 2017 lúc 20:42

\(\frac{u+2}{u-2}=\frac{v+3}{v-3}\)
nhân chéo,ta có
         (u+2)(v-3)=(u-2)(v+3)
<=> uv-3u+2v-6=uv+3u-2v-6          
=>   uv-3u+2v-6-uv-3u+2v+6=0
<=> -6u+4v=0
<=> 4v      =6u
<=> 2v      =3u
<=> \(\frac{u}{2}=\frac{v}{3}\)(đpcm)

Nguyễn Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2020 lúc 20:44

Câu 1:

a) Ta có: \(\frac{x}{2}=\frac{y}{3}\)

\(\Leftrightarrow\frac{4x}{8}=\frac{3y}{9}\)

Ta có: 4x-3y=-2

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{4x}{8}=\frac{3y}{9}=\frac{4x-3y}{8-9}=\frac{-2}{-1}=2\)

Do đó:

\(\left\{{}\begin{matrix}\frac{4x}{8}=2\\\frac{3y}{9}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=16\\3y=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)

Vậy: (x,y)=(4;6)

b) Đặt \(\frac{x}{4}=\frac{y}{5}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)

Ta có: xy=20

\(\Leftrightarrow4k\cdot5k=20\)

\(\Leftrightarrow20k^2=20\)

\(\Leftrightarrow k^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4k=4\cdot1=4\\y=5k=5\cdot1=5\end{matrix}\right.\\\left\{{}\begin{matrix}x=4k=4\cdot\left(-1\right)=-4\\y=5k=5\cdot\left(-1\right)=-5\end{matrix}\right.\end{matrix}\right.\)

Vậy: (x,y)={(4;5);(-4;-5)}

Câu 2:

Ta có: \(\left\{{}\begin{matrix}\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\\x+y+z=9\end{matrix}\right.\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{9}{9}=1\)

Do đó:

\(\left\{{}\begin{matrix}\frac{x}{2}=1\\\frac{y}{3}=1\\\frac{z}{4}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot1=2\\y=3\cdot1=3\\y=4\cdot1=4\end{matrix}\right.\)

Vậy: (x,y,z)=(2;3;4)

Trúc Giang
13 tháng 7 2020 lúc 20:46

Câu 1

a) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{4x}{8}=\frac{3y}{9}\)

\(\frac{4x}{8}=\frac{3y}{9}=\frac{4x-3y}{8-9}=\frac{-2}{-1}=2\)

\(\frac{4x}{8}=2\Rightarrow x=\frac{8.2}{4}=4\)

\(\frac{3y}{9}=2\Rightarrow y=\frac{2.9}{3}=6\)

Vậy: x = 4; y = 6

b) Đặt: \(\frac{x}{4}=\frac{y}{5}=k\)

Ta có:\(\left\{{}\begin{matrix}\frac{x}{4}=k\Rightarrow x=4k\\\frac{y}{5}=k\Rightarrow y=5k\end{matrix}\right.\)

\(x.y=20\)

=> 4k . 5k = 20

=> 20k = 20

=> k = 20 : 20 = 1

\(\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\)

Vậy: x = 4; y = 5

Câu 2:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{9}{9}=1\)

Ta có: \(\left\{{}\begin{matrix}\frac{x}{2}=1\Rightarrow x=2.1=2\\\frac{y}{3}=1\Rightarrow y=3.1=3\\\frac{z}{4}=1\Rightarrow z=4.1=4\end{matrix}\right.\)

Vậy: x = 2; y = 3; z = 4

♥ Dora Tora ♥
Xem chi tiết
Trần Thanh Phương
20 tháng 9 2019 lúc 18:55

Đặt \(ax^3=by^3=cz^3=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{k}{x^3}\\b=\frac{k}{y^3}\\c=\frac{k}{z^3}\end{matrix}\right.\)

Thay vào VT ta được :

\(VT=\sqrt[3]{x^2\cdot\frac{k}{x^3}+y^2\cdot\frac{k}{y^3}+z\cdot\frac{k}{z^3}}=\sqrt[3]{\frac{k}{x}+\frac{k}{y}+\frac{k}{z}}\)

\(=\sqrt[3]{k\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}=\sqrt[3]{k}\) (1)

Thay vào VP ta được :

\(VP=\sqrt[3]{\frac{k}{x^3}}+\sqrt[3]{\frac{k}{y^3}}+\sqrt[3]{\frac{k}{z^3}}=\frac{\sqrt[3]{k}}{x}+\frac{\sqrt[3]{k}}{y}+\frac{\sqrt[3]{k}}{z}=\sqrt[3]{k}\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\sqrt[3]{k}\) (2)

Từ (1) và (2) \(\Rightarrow VT=VP\)

Ta có đpcm.

Dinh Thi Hai Ha
20 tháng 9 2019 lúc 20:21

Ta có: \(ax^3+by^3+cz^3=\frac{ax^3}{x}+\frac{by^3}{y}+\frac{cz^3}{z}\)

\(ax^3=by^3=cz^3\)

\(\Rightarrow ax^3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=ax^3\)

\(\Rightarrow\sqrt[3]{ax^3+by^3+cz^3}=x\sqrt[3]{a}\\ \Leftrightarrow\frac{\sqrt[3]{ax^3+by^3+cz^3}}{x}=\sqrt[3]{a}\\ \Leftrightarrow\sqrt[3]{ax^3+by^3+cz^3}.\frac{1}{x}=\sqrt[3]{a}\)

Tương tự, ta có:

\(\sqrt[3]{ax^3+by^3+cz^3}.\frac{1}{y}=\sqrt[3]{b}\)

\(\sqrt[3]{ax^3+by^3+cz^3}.\frac{1}{z}=\sqrt[3]{c}\)

Cộng vế theo vế các đẳng thức, ta có:

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\sqrt[3]{ax^3+by^3+cz^3}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\\ =\sqrt[3]{ax^3+by^3+cz^3}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\left(đpcm\right)\)

Chúc bạn học tốt!