tìm các số nguyên tố p q sao cho p^q+q^p=(2p+q+1)(2q+p+1)
Tìm tất cả các số nguyên tố p,q sao cho 2p+q và p.q+1 cũng là số nguyên tố
p.q + 1là số nguyên tố
Mà p.q + 1 > 3 => p .q + 1 lẻ => p.q chẵn
< = > p = 2 hoặc q = 2
Bạn liệt kê ra
Tìm tất cả các số nguyên tố p;q sao cho 2p+q và pq+1 đều là số nguyên tố
Tìm 2 số nguyên tố p, q sao cho (5p - 2p)(5q - 2q) chia hết cho p.q
Tìm số nguyên tố p và q sao cho 2p+q và pg+1 đều là số nguyên tố
Tìm tất cả các số nguyên tố p,q sao cho 2p+q và p.q+1 đều là các số nguyên tố( dấu .là dấu nhân nhé ở chỗ p.q ấy)
Nếu p = 2 ; q = 1
=> 2 . 2 + 1 = 5
2 . 1 + 1 = 3
Nếu p, q chẵn => 3k + k chia hết cho 3 => hợp số ( loại )
nếu p chẵn , q lẻ => 2k . 3k + 1 = 6k + 1 ( nguyên tố ) thỏa mãn
=> p = 2 ; q= 1
ai bít Cao Phan Tuấn Anh thì tick nha vì em là em họ của anh ấy
1. Cho \(a,b,c\in Z\), \(a^3+b^3+c^3⋮9\). CMR abc⋮3
2. Tìm p nguyên tố để 2p+1 là lập phương 1 số tự nhiên
3. tìm p, q là các số nguyên tố phân biệt sao cho \(p+q=\left(p-q\right)^3\)
câu 2:
Với p=2→2p+1=5p=2→2p+1=5 không là lập phương 11 số tự nhiên
→p=2→p=2 loại
→p>2→(p,2)=1→p>2→(p,2)=1
Đặt 2p+1=(2k+1)3,k∈N2p+1=(2k+1)3,k∈N vì 2p+12p+1 lẻ
→2p=(2k+1)3−1→2p=(2k+1)3−1
→2p=(2k+1−1)((2k+1)2+(2k+1)+1)→2p=(2k+1−1)((2k+1)2+(2k+1)+1)
→2p=2k(4k2+6k+3)→2p=2k(4k2+6k+3)
→p=k(4k2+6k+3)→p=k(4k2+6k+3)
Vì pp là số nguyên tố, 4k2+6k+3>k4k2+6k+3>k
→k=1→k=1 và 4k2+6k+34k2+6k+3 là số nguyên tố
→4k2+6k+3=13→4k2+6k+3=13 (Khi k=1k=1) là số nguyên tố
→k=1→k=1 chọn
→2p+1=27→2p+1=27
→p=13
câu 3: p−qp−q chia hết cho 2 suy ra q=k.(2k−1)(2k+1)q=k.(2k−1)(2k+1)
Do vậy qq thành tích 3 số nguyên lớn hơn 1 suy ra vô lý vì nó là nguyên tố.
Suy ra q=3,p=5q=3,p=5 Thỏa mãn
TH2: p−q−1=2tp−q−1=2t nên t=0t=0 vì nếu không thì p−q−1=0↔p−q=1↔p=3,q=2p−q−1=0↔p−q=1↔p=3,q=2 thay vào đề loại.
TH3: q=(2m−1)(2m−2)mq=(2m−1)(2m−2)m
Nếu qq thành tích 3 số nguyên lớn hơn 1 loại
Suy ra p=5,q=3p=5,q=3
em hok cop nha
nếu thấy nghi thì tại máy tính của em nó bị lỗi đấy ạ
1. Cho \(a,b,c\in Z\), \(a^3+b^3+c^3⋮9\). CMR abc⋮3
2. Tìm p nguyên tố để 2p+1 là lập phương 1 số tự nhiên
3. tìm p, q là các số nguyên tố phân biệt sao cho \(p+q=\left(p-q\right)^3\)
1.
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)
Do vế phải chia hết cho 3 \(\Rightarrow\) vế trái chia hết cho 3
\(\Rightarrow a+b+c⋮3\Rightarrow\left(a+b+c\right)^3⋮27\)
\(a+b+c⋮3\Rightarrow3\left(a+b+c\right)⋮9\)
\(\Rightarrow\left(a+b+c\right)^3-\left(a^3+b^3+c^3\right)-3\left(a+b+c\right)\left(ab+bc+ca\right)⋮9\)
\(\Rightarrow3abc⋮9\Rightarrow abc⋮3\)
2.
Đặt \(2p+1=n^3\Rightarrow2p=n^3-1=\left(n-1\right)\left(n^2+n+1\right)\) (hiển nhiên n>1)
Do \(n^2+n+1=n\left(n+1\right)+1\) luôn lẻ \(\Rightarrow n-1\) chẵn \(\Rightarrow n=2k+1\)
\(\Rightarrow2p=\left(2k+1-1\right)\left(n^2+n+1\right)=2k\left(n^2+n+1\right)\)
\(\Rightarrow p=k\left(n^2+n+1\right)\Rightarrow k=1\Rightarrow n=3\)
\(\Rightarrow p=13\)
Tham khảo:
2, Với \(p=2->2p+1=5\) không là lập phương 1 số tự nhiên
\(->p=2\) loại
\(-> p>2->(p,2)=1\)
Đặt \(2p+1=(2k+1)^3, k∈ N,\)vì \(2p+1\) lẻ
\(->2p=(2k+1)^3-1\)
\(-> 2p=(2k+1-1)[(2k+1)^2+(2k+1)+1]\)
\(->2p=2k(4k^2+6k+3)\)
\(->p=k(4k^2+6k+3)\)
Vì \(p\) là số nguyên tố, \(4k^2+6k+3>k\)
\(->k=1\) và \(4k^2+6k+3\) là số nguyên tố.
\(->4k^2+6k+3=13(\) khi \(k=1)\) là số nguyên tố
\(->k=1\) (chọn)
\(-> 2p+1=27\)
\(->p=13\)
3.
Do \(p+q>0\Rightarrow\left(p-q\right)^3>0\Rightarrow p>q\)
Nếu \(q=2\Rightarrow\left(p-2\right)^3=p+2\Rightarrow p^3-6p^2+11p-10=0\) ko có nghiệm nguyên (loại)
\(\Rightarrow q>2\Rightarrow q\) lẻ \(\Rightarrow p;q\) cùng lẻ \(\Rightarrow p-q\) chẵn
\(\Rightarrow p-q=2k\)
Ta có:
\(\left(p-q\right)^3=p+q\Rightarrow\left(p-q\right)^3-\left(p-q\right)=2q\)
\(\Rightarrow\left(p-q\right)\left[\left(p-q\right)^2-1\right]=2q\)
\(\Rightarrow\left(p-q\right)\left(p-q-1\right)\left(p-q+1\right)=2q\)
\(\Rightarrow2k\left(p-q-1\right)\left(p-q+1\right)=2q\)
\(\Rightarrow q=k\left(p-q-1\right)\left(p-q+1\right)\)
Do q có 3 ước, mà \(p-q+1>p-q-1\)
\(\Rightarrow q\) là SNT khi \(k=p-q-1=1\)
\(\Rightarrow p-q=2k=2\) (1)
\(\Rightarrow p+q=\left(p-q\right)^3=2^3=8\) (2)
(1);(2) \(\Rightarrow\left(p;q\right)=\left(5;3\right)\)
tìm số nguyên tố p và q sao cho 2p+q và pq+1 là số nguyên tố
cần gấp
tìm số nguyên tố p và q sao cho 2p+q và pq+1u là các số nguyên tố