Những câu hỏi liên quan
Đào Thu Hoà
Xem chi tiết
Nguyễn Hưng Phát
16 tháng 4 2018 lúc 12:24

Cách 1:(nếu đã học BĐT Bunhia)=>Áp dụng BĐT Bunbiacopxki ta có:

\(\frac{1^2}{a^2+2bc}+\frac{1^2}{b^2+2ac}+\frac{1^2}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{3^2}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)

Cách 2:chưa học BĐT ...

Với a,b,c>0 thì \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)(tự chứng minh)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

Áp dụng ta có:\(BĐT\ge\frac{9}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\ge9\)

Đinh Phương Nga
Xem chi tiết
Hoàng Lê Bảo Ngọc
12 tháng 7 2016 lúc 20:09

Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) với \(x=a^2+2bc;y=b^2+2ac;z=c^2+2ab\)

Ta có : \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=\frac{9}{\left(a+b+c\right)^2}\)

\(\Rightarrow\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)( Vì a + b + c = 1)

kaneki_ken
Xem chi tiết
Đoàn Thị Thu Hương
Xem chi tiết
Thầy Giáo Toán
26 tháng 8 2015 lúc 20:27

Theo bất đẳng thức Cauchy-Schwartz ta có

\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2bc+b^2+2ca+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9.\)

phùng thị thu hải
Xem chi tiết
Tống Hiếu
13 tháng 3 2017 lúc 14:55

a) đáp án A=1

b) B=0

c) C=1

Đệ Ngô
Xem chi tiết
shitbo
9 tháng 6 2019 lúc 15:33

\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{3^2}{\left(a+b+c\right)^2}=9\left(đpcm\right)\)

Lê Tài Bảo Châu
23 tháng 11 2019 lúc 22:43

shitbo

Làm như vầy là sai nha em

Khách vãng lai đã xóa
Lê Tài Bảo Châu
23 tháng 11 2019 lúc 22:49

Theo BĐT Cauchy-Schwarz dạng engel ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

CM: Áp dụng BĐT AM-GM ta có:

\(x+y+z\ge3\sqrt[3]{xyz}\left(1\right)\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\left(2\right)\)

Lấy (1) nhân (2) ta được:

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)(*)

Từ (*) ta có: \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{a^2+b^2+c^2+2ab+2bc+2ca}\frac{9}{\left(a+b+c\right)^2}=9\)

\(\Rightarrow\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\left(đpcm\right)\)

Khách vãng lai đã xóa
Hoang thi dieu linh
Xem chi tiết
Thiên_Thần_Dấu_Tên
3 tháng 1 2016 lúc 6:56

khó quá xin lỗi nha em  mới hok lớp 7

Ngô Văn Minh
3 tháng 1 2016 lúc 7:46

Câu này lớp 7 tớ có làm. Cũng như cái mà gọi là áp dụng t/c dãy tỉ số bằng nhau và tỉ lệ thức. mình tính ra dc a, b. c rồi.

Snowflakes
Xem chi tiết
Thầy Giáo Toán
21 tháng 8 2015 lúc 22:24

Lần sau em viết đề cẩn thận hơn nhé, dấu lớn hơn đúng ra phải là lớn hơn hoặc bằng và không có ẩn d.

Bài này sử dụng bất đẳng thức Cauchy-Schwartz thôi (Nếu bạn chưa quen, thì xem lại phát biểu và chứng minh ở đây: http://olm.vn/hoi-dap/question/174274.html ).

Ta có \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a^2+2bc\right)+\left(b^2+2ca\right)+\left(c^2+2ab\right)}=1.\)

Dấu bằng xảy ra khi và chỉ khi \(a=b=c.\)

Con Heo
Xem chi tiết