cho tam giac ABC vuông Tại A. Đường Phân Giac BD(Dthuộc AC) . Kẻ DH vuông góc Với BC (H thuộc BC ). gọi K là Giao Điểm Của AB và DH
a) Chứng Minh : AD=HD
b) Chứng Minh : tam giác DKC cÂN
c) Chứng Minh : AH song song KC
d) Chứng Minh : 2(AD+AK)>KC
cho tam giac ABC vuông tại A tia phan giac cua góc ABC cắt AC tại D từ D kẻ DH vuông góc với BC H thuộc BC và DH cắt AB tại K
a chứng minh AD=HD
b so sánh độ dài hai cạnh AD và DC
c chứng minh tam giác KBC cân
a) Xét Δ ADB vuông và ΔBHD vuông có:
BD là cạnh chung
∠ ABD = ∠ HBD ( do BD là tia phân giác của ∠ BAC, H ∈ BC )
Do đó: Δ ADB = Δ BHD( ch - gn )
⇒ AD = DH ( hai cạnh tương ứng )
b) Xét Δ ADK và Δ HDC có
AD=DH ( cmt )
∠ ADK = ∠ HDC ( đối đỉnh )
Vậy: Δ ADK = Δ HDC ( cgv - gn )
⇒ AD = DC ( 2 cạnh tương ứng )
c) Ta có: BK = BA + AK ( do B,A,K thẳng hàng )
BC = BH + HC ( do B,H,C thẳng hàng )
mà BA = BH ( Δ BAD = ΔBHD)
và AK = HC ( Δ ADK = ΔHDC )
⇒ BK = BC ( 1 )
Xét Δ KBC có BK = BC ( cmt ) ( 2 )
Từ ( 1 ) và ( 2 ): ⇒ KBC cân tại B ( định nghĩa tam giác cân )
cho tam giác abc vuông tại A đường phân giác BD (D thuộc AC) kẻ DH vuông góc với BC (H thuộc BC) gọi K là giao điểm của BA và HD .Chứng minh AD = HD, BD vuông góc KC, góc DKC = góc DCK
cho tam giac ABC vuông tại A tia phan giac cua góc ABC cắt AC tại D từ D kẻ DH vuông góc với BC (H thuộc BC) và DH cắt AB tại K
a) Chứng minh tam giác ABD=tam giácHBD
b) đường thẳng HD cắt đường thẳng BA tại K.Chứng minh tam giác BKC cân
c) gọi M là trung điểm của KC. chứng minh 3 điểm B,D,M thẳng hàng
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
c: ΔBKC cân tại B
mà BM là trung tuyến
nên BM là phân giác của góc ABC
=>B,D,M thẳng hàng
cho tam giác ABC vuông tại A. Đường phân giác BD ( D thuộc AC). Kẻ DH vuông góc với BC ( H thuộc BC ). Gọi K là giao điểm của BA và HD. Chứng minh: a, AD = HD b, BD vuông KC c, Góc DKC = Góc DCK d, 2.( AD + AK)> KC
cho tam giác abc vuông tại a đường phân giác bd (d thuộc ac). Kẻ dh vuông góc với bc (h thuộc bc) Gọi k là giao điểm của ab và dh. Chứng minh AH //
KCcho tam giác vuông tại A. Đường phân giác BD (D thuoc AC). Kẻ DH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của BA và HD
Chứng minh :
a)AD = HD
b)góc DKC = góc DCK
Cho tam giác ABC vuông tại A , đường phân giác BD [ D thuộc EC] . Thừ D kẻ DH vuông góc với BC .
a, Chứng minh rằng tam giác ABD = tam giác HBD
b, So sánh AD và BC .
c, Gọi k là giao điểm của AB và DH , I là trung điểm của KC . Chứng minh điểm BDI chẳng hạn.
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
5 )
tự vẽ hình nha bạn
a)
Xét tam giác ABM và tam giác ACM có :
AM cạnh chung
AB = AC (gt)
BM = CM (gt)
suy ra : tam giác ABM = tam giác ACM ( c-c-c)
suy ra : góc BAM = góc CAM ( 2 góc tương ứng )
Hay AM là tia phân giác của góc A
b)
Xét tam giác ABD và tam giác ACD có :
AD cạnh chung
góc BAM = góc CAM ( c/m câu a)
AB = AC (gt)
suy ra tam giác ABD = tam giác ACD ( c-g-c)
suy ra : BD = CD ( 2 cạnh tương ứng)
C) hay tam giác BDC cân tại D