Tìm một số chính phương có ba chữ số biết rằng nó chia hết cho 56
Tìm một số chính phương có ba chữ số biết rằng nó chia hết cho 56
mi lên mạng có mà lộc
tìm 1 số chính phương có 3 chữ số biết rằng nó chia hết cho 56
Gọi só chính phương đó là ab :
ab = 784
nhấn vào đúng chi tiết sẽ hiện ra bạn nhớ nhắn mik nhé !!!
TÌM 1 SỐ CHÍNH PHƯƠNG CÓ 3 CHỮ SỐ BIẾT NÓ CHIA HẾT CHO 56
1. tìm số tự nhiên n có hai chữ số, biết rằng 2n+1 và 3n+1 đều là các số chính phương.
2.tìm số tự nhiên có hai chữ số, biết rằng nếu nhân nó với 45 thì được một số chính phương.
3.a) Các số tự nhiên n và 2n có tổng các các chữ số bằng nhau. Chứng minh rằng n chia hết cho 9.
b)* tìm số chính phương n cá ba chữ số, biết rằng n chia hết cho 5 và nếu nhân n với 2 thì tổng các chữ số của nó không đổi.
3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9
mà 2n-n=n=>n chia hết cho 9 => đpcm
Tìm số chính phương có 3 chữ số biết nó chia hết cho 56 giải chi tiết ra nha!
số đó là 784 nha pn ... vì các chữ số tận cùng là số chính phương là 0;1;4;5;6;9 nên ta lần lượt nhân 59 vs các số 1,2,3,4....=> ta thấy 59*14=784 nó có số tận cùng là 4 và bình phuong của nó là 28 bình phương => số phải tìm là 784 nha ( có nhìu cách nữa nha )......
tìm một số tự nhiên sao cho nếu thêm 64 đơn vị hoặc bớt 35 đơn vị đều được 1 số chính phương
răng mi ko đăng lên trang chủ của mi Hồ Khánh Ly
Tìm tất cả các chữ số a,b,c thỏa mãn
abc-cba=6b3
Tìm một số chính phương có 3 chữ số biết rằng nó chia hết cho 56
CMR: A=75(42018+42017+....+42+5)+25 chia hết cho 42019
Tìm số chính phương n có ba chữ số, biết rằng n chia hết cho 5 và nếu nhân n với 2 thì tổng các chữ số của nó không đổi
Tìm một số chính phương có 3 chữ số biết rằng nó chia hết cho \(^{^{2019}4}\)
Tìm số tự nhiên có bốn chữ số \(\overline{abcd}\), biết rằng nó là một số chính phương, số \(\overline{abcd}\) chia hết cho \(9\) và \(d\) là một số nguyên tố.
\(\overline{abcd}⋮9\) (d là số nguyên tố)
\(\Rightarrow d\in\left\{3;5;7\right\}\)
mà \(\overline{abcd}\) là số chính phương
\(\Rightarrow d\in\left\{5\right\}\Rightarrow c\in\left\{2\right\}\)
\(\Rightarrow\overline{ab}\in\left\{12;20;30;56;72\right\}\)
mà \(\left\{{}\begin{matrix}a+b+c+d⋮9\\c+d=2+5=7\end{matrix}\right.\)
\(\Rightarrow\overline{ab}\in\left\{20;56\right\}\)
\(\Rightarrow\overline{abcd}\in\left\{2025;5625\right\}\)
Số chính phương có bốn chữ số. Số chính phương có bốn chữ số có thể là 1000, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801, 10000.
- Nếu tổng các chữ số là 9, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 18, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 27, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 36, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 45, thì số abcd
chia hết cho 9.
Ví dụ: Giả sử ta tìm số tự nhiên có bốn chữ số abcd
, biết rằng nó là một số chính phương, số abcd
chia hết cho 9 và d là một số nguyên tố.
- Ta tìm số chính phương có bốn chữ số: 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801, 10000.
- Ta kiểm tra số abcd
chia hết cho 9. Ví dụ, nếu ta chọn số 2025, tổng các chữ số là 2 + 0 + 2 + 5 = 9, nên số 2025 chia hết cho 9.
- Ta kiểm tra d có phải là số nguyên tố. Ví dụ, nếu ta chọn số 2025, d = 5 không chia hết cho bất kỳ số nguyên tố nào từ 2 đến căn bậc hai của 5, nên d = 5 là số nguyên tố.
- Kết hợp các kết quả từ các bước trên, ta có số tự nhiên thỏa mãn yêu cầu đề bài là 2025.
A = \(\overline{abcd}\)
+ vì A là một số chính phương nên \(d\) = 0; 1; 4; 5;6; 9
+ Vì \(d\) là số nguyên tố nên \(d\) = 5
+ Vì A là số chính phương mà số chính phương có tận cùng bằng 5 thì chữ số hàng chục là: 2 ⇒ c =2
+ Vì A ⋮ 9 ⇒ a + b + c + d \(⋮\) 9
⇔ a + b + 2 + 5 ⋮ 9 ⇒ a + b = 2; 11
a + b = 2⇒ (a; b) =(1; 1); (2; 0) ⇒ \(\overline{abcd}\) = 1125; 2025
a + b = 11 ⇒(a;b) =(2;9); (3;8); (4; 7); (5; 6); (6;5); (7;4); (8; 3); (9;2)
⇒ \(\overline{abcd}\) = 2925; 3825; 4725; 5625; 6525; 7425; 8325; 9225
Vì 2025 = 452; 5625 = 752 vậy số thỏa mãn đề bài là: 2025 và 5625