Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Tấn Lộc
Xem chi tiết
Nguyễn Lê Anh Thư
21 tháng 1 2021 lúc 21:12

mi lên mạng có mà lộc

Khách vãng lai đã xóa
Đinh Quang Minh
Xem chi tiết
Cure Beauty
9 tháng 2 2017 lúc 20:37

Gọi só chính phương đó là ab :

ab = 784

nhấn vào đúng chi tiết sẽ hiện ra bạn nhớ nhắn mik nhé !!!

nguyễn xuân lộc
Xem chi tiết
Đỗ Phương Linh
Xem chi tiết
Đoàn Minh Châu
2 tháng 2 2015 lúc 10:14

3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9

mà 2n-n=n=>n chia hết cho 9 => đpcm

Ran Mori xinh đẹp
16 tháng 1 2017 lúc 14:40

câu 1 bạn châu sai rồi

Nguyễn Huy Hoàng
Xem chi tiết
Cô Bé Ngốc Nghếch
20 tháng 3 2016 lúc 17:04

số đó là 784 nha pn ... vì các chữ số tận cùng là số chính phương là 0;1;4;5;6;9 nên ta lần lượt nhân 59  vs các số 1,2,3,4....=> ta thấy 59*14=784 nó có số tận cùng là 4 và bình phuong của nó là 28 bình phương => số phải tìm là 784 nha ( có nhìu cách  nữa nha )......

Hồ Khánh Ly
4 tháng 8 2016 lúc 7:49

tìm một số tự nhiên sao cho nếu thêm 64 đơn vị hoặc bớt 35 đơn vị đều được 1 số chính phương

Lại Thị Phương Chi
4 tháng 8 2016 lúc 9:41

răng mi ko đăng lên trang chủ của mi Hồ Khánh Ly

Free Fire
Xem chi tiết
Trần Xuân Mai
Xem chi tiết
Hà Đào
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Đức Trí
2 tháng 8 2023 lúc 8:11

\(\overline{abcd}⋮9\)  (d là số nguyên tố)

\(\Rightarrow d\in\left\{3;5;7\right\}\)

mà \(\overline{abcd}\) là số chính phương

\(\Rightarrow d\in\left\{5\right\}\Rightarrow c\in\left\{2\right\}\)

\(\Rightarrow\overline{ab}\in\left\{12;20;30;56;72\right\}\)

mà \(\left\{{}\begin{matrix}a+b+c+d⋮9\\c+d=2+5=7\end{matrix}\right.\)

\(\Rightarrow\overline{ab}\in\left\{20;56\right\}\)

\(\Rightarrow\overline{abcd}\in\left\{2025;5625\right\}\)

Trần Đình Thiên
2 tháng 8 2023 lúc 7:46


 Số chính phương có bốn chữ số. Số chính phương có bốn chữ số có thể là 1000, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801, 10000.


- Nếu tổng các chữ số là 9, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 18, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 27, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 36, thì số abcd
chia hết cho 9.
- Nếu tổng các chữ số là 45, thì số abcd
chia hết cho 9.

 

Ví dụ: Giả sử ta tìm số tự nhiên có bốn chữ số abcd
, biết rằng nó là một số chính phương, số abcd
chia hết cho 9 và d là một số nguyên tố.

- Ta tìm số chính phương có bốn chữ số: 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801, 10000.

- Ta kiểm tra số abcd
chia hết cho 9. Ví dụ, nếu ta chọn số 2025, tổng các chữ số là 2 + 0 + 2 + 5 = 9, nên số 2025 chia hết cho 9.

- Ta kiểm tra d có phải là số nguyên tố. Ví dụ, nếu ta chọn số 2025, d = 5 không chia hết cho bất kỳ số nguyên tố nào từ 2 đến căn bậc hai của 5, nên d = 5 là số nguyên tố.

- Kết hợp các kết quả từ các bước trên, ta có số tự nhiên thỏa mãn yêu cầu đề bài là 2025.

A = \(\overline{abcd}\) 

+ vì A là một số chính phương nên \(d\) = 0; 1; 4; 5;6; 9

+ Vì \(d\) là số nguyên  tố nên \(d\) = 5

+ Vì A là số chính phương mà số chính phương có tận cùng bằng 5 thì chữ số hàng chục là: 2 ⇒ c =2

+ Vì A ⋮ 9 ⇒ a + b + c + d \(⋮\) 9 

⇔ a + b + 2 + 5 ⋮ 9 ⇒ a + b = 2; 11

a + b  = 2⇒ (a; b) =(1; 1); (2; 0) ⇒ \(\overline{abcd}\) = 1125; 2025

a + b = 11 ⇒(a;b) =(2;9); (3;8); (4; 7); (5; 6); (6;5); (7;4); (8; 3); (9;2)

⇒ \(\overline{abcd}\) = 2925; 3825; 4725; 5625; 6525; 7425; 8325; 9225

 Vì 2025 = 452; 5625 = 752 vậy số thỏa mãn đề bài là: 2025 và 5625