Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Milly BLINK ARMY 97
Xem chi tiết
Lấp La Lấp Lánh
30 tháng 9 2021 lúc 19:51

\(\dfrac{x-2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

Trọng Nguyễn
Xem chi tiết
⭐Hannie⭐
1 tháng 11 2023 lúc 21:59

Bài `13`

\(a,\sqrt{27}+\sqrt{48}-\sqrt{108}-\sqrt{12}\\ =\sqrt{9\cdot3}+\sqrt{16\cdot3}-\sqrt{36\cdot3}-\sqrt{4\cdot3}\\ =3\sqrt{3}+4\sqrt{3}-6\sqrt{3}-2\sqrt{3}\\ =\left(3+4-6-2\right)\sqrt{3}\\ =-\sqrt{3}\\ b,\left(\sqrt{28}+\sqrt{12}-\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{84}\\ =\left(\sqrt{4\cdot7}+\sqrt{4\cdot3}-\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{4\cdot21}\\ =\left(2\sqrt{7}+2\sqrt{3}-\sqrt{7}\right)\cdot\sqrt{7}+2\sqrt{21}\\ =2\cdot7+2\sqrt{21}-7+2\sqrt{21}\\ =14+2\sqrt{21}-7+2\sqrt{21}\\ =7+4\sqrt{21}\)

Nguyễn Lê Phước Thịnh
2 tháng 11 2023 lúc 0:13

17:
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)

Để A là số nguyên thì \(\sqrt{x}-1⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2+1⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)

=>\(\sqrt{x}\in\left\{3;1\right\}\)

=>\(x\in\left\{9;1\right\}\)

16:

a: BC=BH+CH

=9+16

=25(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{9\cdot25}=15\left(cm\right)\\AC=\sqrt{16\cdot25}=20\left(cm\right)\end{matrix}\right.\)

b: M là trung điểm của AC

=>AM=AC/2=10(cm)

Xét ΔAMB vuông tại A có

\(tanAMB=\dfrac{AB}{AM}=\dfrac{15}{10}=\dfrac{3}{2}\)

nên \(\widehat{AMB}\simeq56^0\)

Milly BLINK ARMY 97
Xem chi tiết
nguyễn thị hương giang
20 tháng 10 2021 lúc 21:20

Câu 12.

   \(5\sqrt{a}+6\sqrt{\dfrac{a}{4}}-a\sqrt{\dfrac{4}{a}}+5\sqrt{\dfrac{4a}{25}}\)

\(=5\sqrt{a}+6\dfrac{\sqrt{a}}{2}-a\cdot\dfrac{2}{\sqrt{a}}+5\dfrac{2\sqrt{a}}{5}\)

\(=5\sqrt{a}+3\sqrt{a}-2\sqrt{a}+2\sqrt{a}\) (vì a>0)

\(=8\sqrt{a}\)

 

 

nguyễn thị hương giang
20 tháng 10 2021 lúc 21:24

Câu 13. Chọn C.

Do x,y\(\ge\)0, x\(\ne\)y ta có:

\(A=\dfrac{x-\sqrt{xy}}{x-y}=\dfrac{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\cdot\left(\sqrt{x}+\sqrt{y}\right)}\)

    \(=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)

Milly BLINK ARMY 97
20 tháng 10 2021 lúc 21:28

Nhờ mn giúp em với ạ, mn xem em làm bài đúng ko ạ?

An Bình
Xem chi tiết
Kaito Kid
10 tháng 3 2022 lúc 15:10

Uống nước nhớ nguồn

Học ăn, học nói, học gói, học mở

Một mặt người bằng mười mặt của

Chớ thấy sóng cả mà ngã tay chèo

Lá lành đùm lá rách

Milly BLINK ARMY 97
Xem chi tiết
Lấp La Lấp Lánh
30 tháng 9 2021 lúc 19:58

\(\sqrt{\dfrac{x^2+2x+1}{16x^2}}=\sqrt{\dfrac{\left(x+1\right)^2}{16x^2}}=\dfrac{\left|x+1\right|}{4\left|x\right|}=\dfrac{1-x}{-4x}=\dfrac{x-1}{4x}\left(do.x\le-1\right)\)

Trần Lê Bảo Châu
Xem chi tiết
Lê Song Phương
15 tháng 9 2023 lúc 19:38

 Cách 1: Cái này là định lý Fermat nhỏ thôi bạn. Tổng quát hơn:

 Cho số nguyên dương a và số nguyên tố p. Khi đó \(a^p\equiv a\left[p\right]\)

 Ta chứng minh định lý này bằng cách quy nạp theo a:

 Với \(a=1\) thì \(1^p\equiv1\left[p\right]\), luôn đúng.

 Giả sử khẳng định đúng đến \(a=k\left(k\inℕ^∗\right)\). Khi đó \(k^p\equiv k\left[p\right]\). Ta cần chứng minh khẳng định đúng với \(a=k+1\). Thật vậy, với \(a=k+1\), ta có:

 \(\left(k+1\right)^p=k^p+C^1_p.k^{p-1}+C^2_pk^{p-2}...+C^{p-1}_pk^1+1\)    (*)

 ((*) áp dụng khai triển nhị thức Newton, bạn có thể tìm hiểu trên mạng)

 (Ở đây kí hiệu \(C^n_m=\dfrac{m!}{n!\left(m-n\right)!}\) với \(m\ge n\) là các số tự nhiên và kí hiệu \(x!=1.2.3...x\)

 Ta phát biểu không chứng minh một bổ đề quan trọng sau: Với p là số nguyên tố thì \(C^i_p⋮p\) với mọi \(1\le i\le p-1\)

 Do đó vế phải của (*) \(\equiv k^p+1\left[p\right]\). Thế nhưng theo giả thiết quy nạp, có \(k^p\equiv k\left[p\right]\) nên \(k^p+1\equiv k+1\left[p\right]\), suy ra \(\left(k+1\right)^p\equiv k+1\left[p\right]\)

 Vậy khẳng định đúng với \(a=k+1\). Theo nguyên lí quy nạp, suy ra điều phải chứng minh. Áp dụng định lý này cho số nguyên tố \(p=7\) là xong.

 Cách 2: Đối với những số nhỏ như số 7 thì ta có thể làm bằng pp phân tích đa thức thành nhân tử để cm là được:

 \(P=a^7-a\) 

 \(P=a\left(a^6-a\right)\)

 \(P=a\left(a^3-1\right)\left(a^3+1\right)\)

 \(P=a\left(a-1\right)\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)

Nếu \(a⋮7,a\equiv\pm1\left[7\right]\) thì hiển nhiên \(P⋮7\)

Nếu \(a\equiv\pm2\left[7\right];a\equiv\pm3\left[7\right]\) thì \(\left(a^2-a+1\right)\left(a^2+a+1\right)⋮7\), suy ra \(P⋮7\). Vậy \(a^7-a⋮7\)

Thư Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2021 lúc 23:01

Câu 5:

a: Xét tứ giác AHMK có 

\(\widehat{AHM}=\widehat{AKM}=\widehat{KAH}=90^0\)

Do đó: AHMK là hình chữ nhật

Sino Gaming
Xem chi tiết
Phạm Thúy An
Xem chi tiết
Nguyễn Đăng Nhân
23 tháng 1 2022 lúc 16:01

\(\frac{\left(-30\right)\left(-5\right)\cdot3}{6\cdot25\cdot8}\Leftrightarrow\frac{30\cdot5\cdot3}{6\cdot25\cdot8}\)

\(\Rightarrow\frac{6\cdot5\cdot5\cdot3}{6\cdot5\cdot5\cdot8}=\frac{3}{8}\)

Khách vãng lai đã xóa