Giải bất phương trình sau \(\frac{2}{3-x}<0\)
Giải bất phương trình sau:
\(\frac{-3}{x+2}< \frac{2}{3-x}\)
\(\frac{-3}{x+2}< \frac{2}{3-x}\)
\(\Leftrightarrow\frac{-3\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}< \frac{2\left(x+2\right)}{\left(x+2\right)\left(3-x\right)}\)
\(\Rightarrow-3\left(3-x\right)< 2\left(x+2\right)\)
\(\Leftrightarrow-9+3x< 2x+4\)
\(\Leftrightarrow3x-2x< 4+9\)
\(\Leftrightarrow x< 13\)
Vậy tập nghiệm của bpt là \(\left\{x|x< 13\right\}\)
Nguyễn Tấn Phát BÀI CỦA BẠN SAI RÙI NHA, NẾU THỬ NGHIỆM THÌ SẼ CÓ NGHIỆM ĐÚNG VÀ CÓ NGHIỆM SAI, SAI NHIỀU HƠN ĐÚNG!!!
BPT \(\Leftrightarrow\frac{2}{3-x}+\frac{3}{x+2}>0\Leftrightarrow\frac{2\left(x+2\right)+3\left(3-x\right)}{\left(3-x\right)\left(x+2\right)}=\frac{13-x}{\left(3-x\right)\left(x+2\right)}>0\)
Lập bảng xét dấu:
Từ bàng trên suy ra với -2 < x < 3 hoặc \(x>13\) thì A > 0 hay bất phương trình đúng.
Vậy....
P/s: Lâu rồi em không làm dạng này nên không chắc đâu ạ!
Giải bất phương trình sau: \(\frac{x}{x+1}-2\sqrt{\frac{x+1}{x}}>3\)
ĐK : \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)
Đặt \(\sqrt{\frac{x+1}{x}}=t>0\)
\(bpt\Leftrightarrow\frac{1}{t^2}-2t>3\Leftrightarrow2t^3+3t^2-1< 0\Leftrightarrow\left(2t-1\right)\left(t+1\right)^2< 0\Leftrightarrow2t-1< 0\)(do \(\left(t+1\right)^2>0\))
\(\Leftrightarrow t< \frac{1}{2}hay\sqrt{\frac{x+1}{x}}< \frac{1}{2}\Rightarrow\frac{x+1}{x}< \frac{1}{4}\)
Với x >0, ta có: \(\frac{x+1}{x}< \frac{1}{4}\Leftrightarrow4\left(x+1\right)< 1\Leftrightarrow x< -\frac{3}{4}\left(trái.với.gt:x>0\right)\)
Với x<-1 ta có: \(\frac{x+1}{x}< \frac{1}{4}\Rightarrow4\left(x+1\right)>x\Rightarrow x>-\frac{3}{4}\Rightarrow-\frac{3}{4}< x< -1\)
Vậy nghiệm của hệ phương trình là: \(-\frac{3}{4}< x< -1\)
Giải các phương trình và bất phương trình sau:
a) \(\frac{x-2}{6}-\frac{x}{2}\le\frac{3}{10}+\frac{x+1}{3}\)
b) \(\frac{x+2}{x^2-5x+6}-\frac{3}{x-2}=\frac{5}{x-3}\)
Thanks!!
\(a,\Leftrightarrow5\left(x-2\right)-15x\le9+10\left(x+1\right)\)
\(\Leftrightarrow5x-10-15x\le9+10x+10\)
\(\Leftrightarrow-20x\le29\)
\(\Leftrightarrow x\ge-1,45\)
Vậy ...........
\(b,\Rightarrow\left(x+2\right)-3\left(x-3\right)=5\left(x-2\right)\)
\(\Leftrightarrow x+2-3x+9-5x+10=0\)
\(\Leftrightarrow-7x+21=0\)
\(\Leftrightarrow x=3\)
Vậy ..............
\(\frac{x-2}{6}-\frac{x}{2}\le\frac{3}{10}+\frac{x+1}{3}\Leftrightarrow\frac{5\left(x-2\right)}{30}-\frac{15x}{30}\le\frac{9}{30}+\frac{10\left(x+1\right)}{30}\)
\(\Leftrightarrow5x-10-15x-9-10x-10\le0\)
\(\Leftrightarrow-20x-29\le0\Leftrightarrow\left(-20x\right)\cdot\frac{-1}{20}\ge29\cdot-\frac{1}{20}\)
\(\Leftrightarrow x\ge-\frac{29}{20}\)
ĐKXĐ : \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
\(\frac{x+2}{x^2-5x+6}-\frac{3}{x-2}=\frac{5}{x-3}\)
\(\Rightarrow\frac{x+2}{x-2x-3x+6}-\frac{3}{x-2}=\frac{5}{x-3}\)
\(\Rightarrow\frac{x+2}{\left(x-2\right)\left(x-3\right)}-\frac{3}{x-2}=\frac{5}{x-3}\)
\(\Rightarrow\frac{x+2}{\left(x-2\right)\left(x-3\right)}-\frac{3\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(\Rightarrow x+2-3x+9-5x+10=0\)
\(\Leftrightarrow-7x+21=0\Leftrightarrow x=3\) (nhân)
tập nghiệm của phương trình là S= 3
giải phương trình:\(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
giải bất phương trình: 2x+3<6-(3-4x)
1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
ĐKXĐ : \(x\ne\pm3\)
\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow-7x+3=-4x-15\)
\(\Leftrightarrow-7x+4x=-15-3\)
\(\Leftrightarrow-3x=-18\)
\(\Leftrightarrow x=6\)( tmđk )
Vậy x = 6 là nghiệm của phương trình
2) 2x + 3 < 6 - ( 3 - 4x )
<=> 2x + 3 < 6 - 3 + 4x
<=> 2x - 4x < 6 - 3 - 3
<=> -2x < 0
<=> x > 0
Vậy nghiệm của bất phương trình là x > 0
Bài 2 (1,0 điểm). Giải phương trình và bất phương trình sau: a) |5x| = - 3x + 2 b) 6x – 2 < 5x + 3 Bài 3 (1,0 điểm.) Giải bất phương trình b) x – 3 x – 4 x –5 x – 6 ——— + ——– + ——– +——–
`|5x| = - 3x + 2`
Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :
`5x =-3x+2`
`<=> 5x +3x=2`
`<=> 8x=2`
`<=> x= 2/8=1/4` ( thỏa mãn )
Nếu `5x<0<=>x<0` thì phương trình trên trở thành :
`-5x = -3x+2`
`<=>-5x+3x=2`
`<=> 2x=2`
`<=>x=1` ( không thỏa mãn )
Vậy pt đã cho có nghiệm `x=1/4`
__
`6x-2<5x+3`
`<=> 6x-5x<3+2`
`<=>x<5`
Vậy bpt đã cho có tập nghiệm `x<5`
a,Giải phương trình sau : (2x + 3)(x-5)=42 +6x
b, Gải phương trình sau: \(\frac{x}{2x-6}-\frac{x}{2x+2}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
c,Gải bất phương trình sau và biểu diễn nghiệm trên trục số : \(\frac{12x+1}{12}\le\frac{9x+1}{3}-\frac{8x+1}{4}\)
trong 2 bất phương trình sau đây , bất phương trình nào tương đương với bất phương trình 2x - 1 >= 0 , giải thích : 2x - 1 + \(\frac{1}{x-3}\) >=\(\frac{1}{x-3}\) và 2x - 1 - \(\frac{1}{x+3}\) >= - \(\frac{1}{x+3}\)
giải bất phương trình sau \(\frac{2\left(x+1\right)}{3}-2\ge\frac{x-2}{2}\)
Giải bất phương trình sau :
\(x-1-\frac{x-1}{3}\le\frac{2x+3}{2}+\frac{x}{3}-1\)
Mong mọi người giúp ạ !
Giải bất phương trình và phương trình sau :
a, \(\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)
b, \(\frac{x^2-4-\left|x-2\right|}{2}=x\left(x-1\right)\)
Cho x,y,z là các sô dương.Chứng minh rằng x/2x+y+z+y/2y+z+x+z/2z+x+y<=3/4