\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
B=\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
Ta có: \(B=\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
\(\Rightarrow B=\frac{2}{20}+\frac{2}{30}+...+\frac{2}{240}\)
\(\Rightarrow B=2.\left(\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\right)\)
\(\Rightarrow B=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{15.16}\right)\)
\(\Rightarrow B=2.\left(\frac{1}{4}-\frac{1}{16}\right)=2.\frac{3}{16}=\frac{3}{8}\)
Vậy \(B=\frac{3}{8}\)
nha m.n
\(B=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+.....+\frac{1}{120}\)
\(B=2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+.....+\frac{1}{240}\right)\)
\(B=2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{15.16}\right)\)
\(B=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+......+\frac{1}{15}-\frac{1}{16}\right)\)
\(B=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(B=2.\frac{3}{16}\)
\(B=\frac{3}{8}\)
Vậy \(B=\frac{3}{8}\)
\(\frac{x}{2008}-\frac{1}{10}-\frac{1}{15}-\frac{1}{21}-...-\frac{1}{120}=\frac{5}{8}\)
tính:
\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+.........+\frac{1}{120}\)
Tính nhanh: N = \(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
Có: \(N=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{1}{120}\)
\(=>N=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(=>N=\frac{2}{4\cdot5}+\frac{2}{5\cdot6}+\frac{2}{6\cdot7}+...+\frac{2}{15\cdot16}\)
\(=>N=\left(\frac{2}{4}-\frac{2}{5}+\frac{2}{5}-\frac{2}{6}+...+\frac{2}{15}-\frac{2}{16}\right)\)
\(=>N=\frac{2}{4}-\frac{2}{16}\)
\(=>N=\frac{1}{2}-\frac{1}{8}\)
\(=>N=\frac{8-2}{16}=\frac{6}{16}=\frac{3}{8}\)
Vậy \(N=\frac{3}{8}\)
Ta có :
\(N=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(N=2\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)\)
\(N=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(N=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(N=2\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(N=\frac{1}{2}-\frac{1}{8}\)
\(N=\frac{3}{8}\)
Vậy \(N=\frac{3}{8}\)
Chúc bạn học tốt ~
tinh nhanh
G=\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
CỨU
\(=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(=\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{15.16}\)
\(=2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(=2.\left(\frac{1}{4}-\frac{1}{16}\right)\)
=\(\frac{1}{8}\)
Tích cho mình nhé cảm ơn
\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(=\frac{2}{4.5}+\frac{2}{5.6}+\frac{2}{6.7}+...+\frac{2}{15.16}\)
\(=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(=2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(=2\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(=2\left(\frac{4}{16}-\frac{1}{16}\right)\)
\(=2\times\frac{3}{16}\)
\(=\frac{6}{16}=\frac{3}{8}\)
Tìm x biết:
\(\frac{x}{2013}-\frac{1}{10}-\frac{1}{15}-\frac{1}{21}-.....-\frac{1}{120}=\frac{5}{8}\)
tim x biết
\(\frac{x}{2010}-\frac{1}{10}-\frac{1}{15}-\frac{1}{21}-.....-\frac{1}{120}=\frac{5}{8}\)
Ta có:
\(\frac{x}{2013}\)-\(\frac{1}{10}\)-\(\frac{1}{15}\)-\(\frac{1}{21}\)-...-\(\frac{1}{120}\)=\(\frac{5}{8}\)
=>\(\frac{x}{2013}\)- (\(\frac{2}{20}\)+\(\frac{2}{30}\)+\(\frac{2}{42}\)+...+\(\frac{2}{240}\)) = \(\frac{5}{8}\)
=>\(\frac{x}{2013}\)- 2.(\(\frac{1}{4.5}\)+\(\frac{1}{5.6}\)+...+\(\frac{1}{15.16}\)) = \(\frac{5}{8}\)
=>\(\frac{x}{2013}\)- 2.(\(\frac{1}{4}\)-\(\frac{1}{10}\)) = \(\frac{5}{8}\)
=>\(\frac{x}{2013}\)- 2.\(\frac{3}{10}\)= \(\frac{5}{8}\)
=>\(\frac{x}{2013}\)= \(\frac{5}{8}\)+\(\frac{6}{10}\)= 1
=> \(x=2013\)
Vậy \(x=2013\)
tìm x
\(\frac{x}{2008}-\frac{1}{10}-\frac{1}{15}-\frac{1}{21}-...-\frac{1}{120}=\frac{5}{8}\)
Ta có:
\(\Rightarrow\frac{x}{2008}=1\)
\(\Rightarrow x=1.2008\)
\(\Rightarrow x=2008\)
Vậy \(x=2008.\)
Chúc bạn học tốt!