cho tam giác ABC có AB > AC , M là trung điểm BC Trên tia đối tia MA lấy điểm D sao cho M là trung điểm AD
A) tam giac ABM =DCM
B) AC // BD
C) Chứng minh : AB+AC > 2AM
Cho tam giác ABC(AB <AC) gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm M sao cho MA=MD
a) Chứng minh tam giac ABM= tam giác DCM
b) Chứng minh AC//BD
c) Trên nửa mặt phẳng bờ AD không chưa điểm B vẽ tia Ax//BC. Trên tia Ax lấy điểm H sao cho AH=BC. Chứng minh H,C,D thẳng hàng
Bạn tự vẽ hình nha
a)Xét tam giác AMB và tam giác DMC ta có:
MA=MD(GT)
AMB=DMC(ĐĐ)
MB=MC(Vì M là TĐ)
\(\Rightarrow\)Tam giác AMB=Tam giác DMC(c.g.c)
b)
Xét tam giác AMC và tam giác DMB ta có:
MA=MD(GT)
AMB=DMC(ĐĐ)
MB=MC(Vì M là TĐ)
\(\Rightarrow\)Tam giác AMC=Tam giác DMB(c.g.c)
\(\Rightarrow\)MAC=MDB(Cặp góc tương ứng)
\(\Rightarrow\)AC//BD(so le trong)
Câu c đợi mk nghĩ đã
c)MK chỉ gợi ý thôi nha
Cần chứng minh CD//AB và CH//AB
Cho tam giác ABC có AB = AC,gọi M là trung điểm của BC. a)Chứng minh:∆ABM = ∆ACM. b)Trên tia đối của tia MA lấy điểm D sao cho MA = MD.Chứng minh:∆ABM = ∆DCM và AB//CD. c)Chứng minh tam giác ABM vuông tại M
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
DO đó: ABDC là hình bình hành
Suy ra: AB//CD
Cho tam giác ABC có AB=AC, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD. a) Chứng minh: tam giác ABM=tam giác ACM. b) Chứng minh: tam giác ABM=tam giác DCM. Từ đó suy ra:AB//DC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
DO đó: ΔABM=ΔACM
b: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//DC
Cho tam giác ABC, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA
a. Chứng minh: tam giác ABM=tam giác DCM
b. Chứng minh: AC=BD
c. Chứng minh AB//CD
a) Xét \(\Delta ABMvà\Delta DCMcó:\)
MB=MC
góc AMB=góc CMD
MA=MD
\(\Rightarrow\Delta ABM=\Delta DCM\left(c-g-c\right)\)
b) Xét \(\Delta AMCvà\Delta BMDcó:\)
MC=MB
góc AMC=góc BMD
MA=MD
\(\Rightarrow\Delta AMC=\Delta DMB\left(c-g-c\right)\)
\(\Rightarrow AC=BD\)(cặp cạnh tương ứng)
c) Theo a), \(\Delta ABM=\Delta DCM\Rightarrow\)góc ABM=góc DCM (cặp góc tương ứng)
Mà 2 này tạo với BC hai góc so le trong nên AB//CD
Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy D sao cho MD = MA.
a) Chứng minh: ABM = DCM
b) Chứng minh: AC // BD
a: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
DO đó: ΔABM=ΔDCM
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AC//BD
Bài 1. Cho tam giác ABC có AB = AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM = MD. a) Chứng minh tam giác ABM = tam giác DCM. b) Chứng minh AB = DC. c) Chứng minh AM = BC. Vẽ hình luôn nha các bạn
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=DC
Cho tam giác ABC có AB<AC. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA ,lấy điểm D sao cho MD=MA.
A)Chứng minh tam giác ABM=tam giác DCM
B)Chứng minh DB//AC(dấu // là song song)
C)Qua A vẽ đường thẳng // với BC,đường thẳng này cắt BD tại E. Chứng minh :B là trung điểm của ED
Cho tam giác ABC có : AB=AC, M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho AM=MD a/ Chứng minh ABM=DCM b/ Chứng minh AB // DC c/ Chứng minh AM vuông góc với BC d/ Tìm điều kiện của tam giác ABC để ADC =30° AC = AH. Chứng minh AD = BH e/ Trên tia đối của tia AC lấy H sao cho AC=AH. f/Chứng minh tam giác HBC vuông.(Làm câu e và f thôi cũng được)
a: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
DO đó: ΔABM=ΔDCM
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//DC
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM la đường cao
cho tam giác ABC có AB = AC, M là trung điểm của BC. Trên tia đối của tia MA lấy D sao cho AM =MD.
a) chứng minh tam giác ABM=DCM
b) chứng minh AB// DC