A=1/50+....+1/99 so sanh A voi 1/2 va 1
so sanh A va B voi 0
A = 1. ( - 2 ) . 3 . ( - 4 ) ..... . 99 . ( -100 )
B = 1 . ( - 2 ) . 3 . ( - 4 ) . ... . (-98) . 99
A có 50 thừa số âm
=> A > 0
b) CÓ 49 thừa số âm
=> B < 0
A có 50 thừa số âm
=> A > 0
B có 49 thừa số âm
=> B < 0
tick nha
so sanh A va B voi 0
A = 1 . ( - 2 ) . 3 .( - 4 ) . .... . 99 . ( - 100 )
B = 1 . ( - 2 ) . 3. ( - 4 ) . .... . ( - 98 ) . 99
So sanh A va B
A=(1+3+5+.......+99) / 50
B=( 2+4+6+.....+98)/ 49
A=1/1*2+1/2*3+1/3*4+......+1/99*100 so sanh voi 1
A = 1/1×2 + 1/2×3 + 1/3×4 + .. + 1/99×100
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
A = 1 - 1/100 < 1
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=1-\frac{1}{100}< 1\)
=> ĐPCM
Ta có:
A = 1/1 x 2 + 1/2 x 3 + 1/3 x 4 + ..... + 1/99 x 100
A = 1- 1/2 + 1/2 - 1 /3 + 1/3 - 1/4 + ..... + 1/99 - 1/100
A = 1 - 1/100 < 1
nha bn
chúc bn học giỏi
so sanh A va B cho A=1+1+4^2+...+4^99;B=4^100
A = 1 + 4 + 4^2 + ... + 4^99
4A = 4 + 4^2 + 4^3 +... + 4^100
4A - A = 3A = ( 4 + 4^2 + 4^100 ) - ( 1 + 4 + 4^2 + 4^99 )
3A = 4^100 - 1
Ta thấy: 3A < B => A < B/3 ( đpcm )
k đúng nhé
A = 1 + 4 + 42 + ... + 499
4A = 4 + 42 + 43 + ... + 4100
4A - A = ( 4 + 42 + 43 + ... + 4100 ) - ( 1 + 4 + 42 + ... + 499 )
3A = 4100 - 1
A = \(\frac{4^{100}-1}{3}\)
Mà B = 4100
\(\Rightarrow\)A < B
so sanh : 2001/2004 va 39/40
so sanh : A = 1/6 + 1/7 + 1/8 + 1/9 + 1/10 voi B = 1
\(A< \frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=\frac{5}{5}=1=B\)
a/
\(\frac{2001}{2004}=\frac{2004-3}{2004}=1-\frac{3}{2004}=1-\frac{1}{668}.\)
\(\frac{39}{40}=\frac{40-1}{40}=1-\frac{1}{40}\)
Ta có \(40< 668\Rightarrow\frac{1}{40}>\frac{1}{668}\Rightarrow1-\frac{1}{40}< 1-\frac{1}{668}\Rightarrow\frac{39}{40}< \frac{2001}{2004}\)
b/
\(A< \frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}=1=B\)
A=99^2015+1/99^2014+1
B=99^2014+1/99^2013+1
so sanh a va b
A = 99^2015 + 1/99^2014 + 1 < 99^2015 + 1 + 98 / 99^2014 + 1 + 98
= 99^2015 + 99 / 99^2014 + 99
= 99(99^2014 + 1) / 99(99^2013+1)
= 99^2014 + 1 / 99^2013 + 1 = B
=> A < B
So sanh
A =1/50+1/51+1/52+...+1/99
B =1/2
A=2020^100-1:2020^99+1 so sanh a va b
B=2020^101-1:2020^100+1