cho tam giác abc vuông tại a .đường trung trực của cạnh ab cắt ab tại d.cắt bc tại g .chứng minh tam giác agc là tam giác cân
a: Xét ΔNAB có
NM vừa là đường cao, vừa là trung tuyến
nên ΔBAN cân tại N
b: Xét ΔBAC có
M là trung điểm của BA
MN//AC
Do đó: N là trung điểm của BC
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
cho tam giác ABC vuông tại A,tia phân giác của B cắt AC tại M.MD vuông góc BC tại D.1)chứng minh tam giác ABD cân.2)BI là đường trung trực của AD.3)Kéo dài 2 cạnh AB và MD cắt nhau tại E.chứng minh tam giác MEC
Cho tam giác ABC vuông tại A và AB = 6cm, AC = 8cm. Trên cạnh BC lấy điểm M sao cho BM = AB. Qua M dựng đường thẳng vuông góc với BC cắt đường thẳng AB tại N.
a. Tính BC
b. Chứng minh tam giác ABC = tam giác MBN
c. Gọi D là giao điểm của MN và AC. Chứng minh BD là đường trung trực củaAM.
d. Chứng minh tam giác DCN cân.
CHO TAM GIÁC ABC CÓ AC>AB. ĐƯỜNG TRUNG TRỰC CỦA CẠNH BC CẮT BA TẠI D, CẮT AC TẠI H, CẮT BC TẠI K. CHỨNG MINH
A, GÓC BDH= GÓC CDH
B, TAM GIÁC BDH= TAM GIÁC CDH
C, GIẢ SỬ TAM GIÁC ABC VUÔNG CÂN TẠI A . CHỨNG MINH GÓC CDH= GÓC ACB; GÓC ABC=GÓC KHC
cho tam giác ABC cân tại A,A>90 độ. Các đường trung trực của AB và của AC cắt nhau tại O và cắt BC tại D và E. Chứng minh rằng:
a)OA là đường trung trực của BC;
b)BD=CE;
c) Tam giác ODE là tam giác cân
a: O nằm trên trung trực của AB,AC
=>OA=OB và OA=OC
=>OB=OC
mà AB=AC
nên AO là trung trực của BC
b: D nằm trên trung trực của AB
=>DA=DB
=>góc DAB=góc DBA
E nằm trên trung trực của AC
=>EA=EC
=>góc EAC=góc ECA=góc DBA=góc DAB
Xét ΔDAB và ΔEAC có
góc DAB=góc EAC
AB=AC
góc B=góc C
=>ΔDAB=ΔEAC
=>BD=CE
c: Xét ΔOBD và ΔOCE có
OB=OC
góc OBD=góc OCE
BD=CE
=>ΔOBD=ΔOCE
=>OD=OE
1. cho tam giác ABC vuông tại A. tia phân giác của góc B cắt cạnh AC tại D. kẻ DM vuông góc với BC tại M.
a) Chứng minh: tam giác ABD = tam giác MBD.
b) Gọi giao điểm của DM và AB là E. chứng minh: tam giác BEC cân.
2. cho tam giác ABC có A = 130*. các đường trung trực của AB và AC cắt nhau tại O và cắt BC theo thứ tự M, N.
a) tính số đo gọc MAN.
b) chứng minh AO là phân giác của góc MAN.
Cho tam giác ABC vuông tại A, tia phân giác góc B cắt AC tại M. Kẻ MD vuông góc BC tại D.
a)Chứng minh tam giác BAD cân
b) Chứng minh BI là trung trực của AD.
c)Kéo dài hai cạnh AB và ND cắt nhau tại E. Chứng minh tam giác MEC cân.
Cho tam giác ABC vuông cân tại A, vẽ về phía ngoài tam giác ABC tam giác BCD vuông cân tại B. Gọi N là điểm bất kỳ trên cạnh BD. Trung trực của CN cắt AB tại M. Chứng minh tam giác CMN là tam giác vuông cân.