Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Khanh Linh
Xem chi tiết
ST
3 tháng 1 2018 lúc 21:26

\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}+\frac{1}{3n+2}\right)\)

\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{3n+2}\right)=\frac{1}{3}\left(\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right)=\frac{1}{3}\cdot\frac{3n}{2\left(3n+2\right)}=\frac{n}{2\left(3n+2\right)}\)

P/s: pải c/m 1/2*5+1/5*8+.....+1/(3n-1)*(3n+2)=n/2*(3n+2) chứ

Nguyễn Phúc
Xem chi tiết
Hoàng Tử Hà
20 tháng 12 2020 lúc 1:57

Tui làm theo cách tiểu học, để mai nghĩ xem có cách nào làm "cấp 3" ko

2+3=5; 5+3=8

Số số hạng: \(\dfrac{3n-1-2}{3}+1=n\left(so-hang\right)\)

Tổng: \(\dfrac{\left(3n-1+2\right).n}{2}=\dfrac{n\left(3n+1\right)}{2}\)

Cua Trôi - Trường Tồn
Xem chi tiết
Lê Tài Bảo Châu
24 tháng 7 2019 lúc 23:11

\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)

\(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}\)

\(=\frac{n}{2\left(3n+2\right)}\)

Romance
Xem chi tiết
soyeon_Tiểu bàng giải
8 tháng 8 2016 lúc 9:59

\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right).\left(3n+2\right)}=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right).\left(3n+2\right)}\right)\)

                                                                          \(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)

                                                                            \(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)

                                                                              \(=\frac{1}{3}.\left(\frac{3n+2}{2.\left(3n+2\right)}-\frac{2}{2.\left(3n+4\right)}\right)\)

                                                                                \(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}=\frac{n}{2.\left(3n+2\right)}\)

BiBi Trần
Xem chi tiết
BiBi Trần
30 tháng 3 2017 lúc 21:11

giup mink đi mấy bn

Nhắn tìm đồng bọn
Xem chi tiết
Nguyễn Hoàng Tiến
8 tháng 5 2016 lúc 21:45

*n=1 thấy: 2=1x4/2 =>* đúng

Giả sử * đúng với n=k, ta có: 2+5+8+...+3k-1=k(3k+1)/2

=> 2+5+8+...+(3k-1)+(3k+2)=k(3k+1)/2+3k+2=(k(3k+1)+6k+4)/2

=> (k(3k+1)+3k+3k+4)/2=(k(3k+4)+3k+4)/2=(k+1)(3k+4)/2

tức là  2+5+8+...+3k+1=(k+1)(3k+4)/2

=> * đúng với n=k+1

=> Theo nguyên lí quy nạp => * đúng với mọi n thuộc N*

Chuyên toán sao học quy nạp sớm thế. 

yl
Xem chi tiết
shir
Xem chi tiết
Người này .........đã .....
8 tháng 12 2021 lúc 11:27

tham khảo:

 

\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)

Trần Nhật Quang
Xem chi tiết
Rimuru tempest
6 tháng 11 2018 lúc 21:51

\(2^2+5^2+8^2+...+\left(3n-1\right)^2=\dfrac{n\left(6n^2+3n-1\right)}{2}\left(1\right)\)

Với n=1

\(VT=4;VP=4\)

(1) đúng với n=1

Giả sử (1) đúng với n=\(k\ge1\)

\(2^2+5^2+8^2+...+\left(3k-1\right)^2=\dfrac{k\left(6k^2+3k-1\right)}{2}\)

Ta cần phải chứng minh (1) đúng với n=k+1

\(\Leftrightarrow2^2+5^2+8^2+...+\left(3k-1\right)^2+\left[3\left(k+1\right)-1\right]^2=\dfrac{\left(k+1\right)\left[6\left(k+1\right)^2+3\left(k+1\right)-1\right]}{2}\)

\(\Leftrightarrow2^2+5^2+8^2+...+\left(3k-1\right)^2+\left(3k+2\right)^2=\dfrac{\left(k+1\right)\left(6k^2+15k+8\right)}{2}\)

\(VT=\dfrac{k\left(6k^2+3k-1\right)}{2}+\left(3k+2\right)^2=\dfrac{6k^3+3k^2-k+18k^2+24k+8}{2}\)

\(=\dfrac{6k^3+21k^2+23k+8}{2}=\dfrac{6k^3+15k^2+8k+6k^2+15k+8}{2}\)

\(=\dfrac{k\left(6k^2+15k+8\right)+\left(6k^2+15k+8\right)}{2}=\dfrac{\left(6k^2+15k+8\right)\left(k+1\right)}{2}\)

\(\Leftrightarrow VT=VP\)

suy ra đpcm