\(B=\frac{1+2+2^2+2^3+.....+2^{2008}}{1-2^{2009}}\)Giúp e nhanh với ạ !!
TÍNH \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2008^2}+\frac{1}{2009^2}}\)
GIÚP E với
Tổng quát \(n\in N\text{*};n\ge2\) ta có \(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+\frac{2\left(n+1-n-1\right)}{n\left(n+1\right)}}\)
\(=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+2\cdot1\cdot\frac{1}{n}-2\cdot1\cdot\frac{1}{n+1}-2\cdot\frac{1}{n}\cdot\frac{1}{n+1}}\)
\(=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n-1}\right)^2}=1+\frac{1}{n}-\frac{1}{n-1}\).Áp dụng vào ta có:
\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{2008^2}+\frac{1}{2009^2}}=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2008}-\frac{1}{2009}\)
\(=\left(1+1+...+1\right)+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\right)\)
Super dễ nhé !! Cho bn xử nốt
Giải giúp em ạ, em đang cần gấp:
Câu 1: So sánh :
a) A=2008^2009+2/2008^2009-1 và B= 2008^2009/2008^2009-3
b) E= (1/33)^7 và F= (1/15)^9
Câu 2: a) Tính tổng;S= 1-3+3^2-3^3+3^4-....+3^100
b) Chứng tỏ rằng : a^3-13a chia hết cho 6
Câu 3: Tìm x thuộc Z:
a) 2(x-3)-5(x-4)=-7
b) |x-1| + |x+3| + ..... + |x+97| + |x+99|= 51x
Câu 4: Tính tổng:
a) A= 79/199+191/1998+947/1997+673/1998+110/1999
b) M= 1+1/2+1/2^2+....+1/2^99+1/2^100+1/2^100
Cảm ơn nhiều ạ mọi người giải chi tiết hộ em!
Tính nhanh:
1) 1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + 7^2-.....- 58^2 + 59^2=?
2) (2^2016 - 2^2015 + 2^2014 - 2^2013 + 2^2012 - 2^2011 + 2^2010 - 2^2009): 2^2008=?
Các bạn giúp mình với ạ! Mình cảm ơn nhiều
A = 12 - 22 + 32 - 42 + 52 - 62 + 72 - .......- 582 + 592
A = 12 + ( 32 - 22) + ( 52 - 42) + (72 - 62) +....+ ( 592 - 582)
A = 1 + ( 3-2)(2+3) + (5-4)(4+5) + (7-6)(6+7)+....+(59-58)(58+59)
A = 1 + 2 + 3 + 4 + 5 + 6 + 7 + ....+ 58 + 59
A = ( 59 + 1).{ (59 - 1): 1 + 1 } : 2
A = 1770
B = \(\dfrac{2^{2016}-2^{2015}+2^{2014}-2^{2013}+2^{2012}-2^{2011}+2^{2010}-2^{2009}}{2^{2008}}\)
Đặt tử số là A
ta có
A = 22016 - 22015+22014 - 22013 + 22012 - 22011 + 22010- 22009
2 A= 22017- 22016 + 22015- 22014 +22013-22012 + 22011 - 22010
2A + A = 22017 - 22009
3A = 22017 - 22009
A = (22017 - 22009):3
B = A : 8 = (22017- 22009) : 3 : 8
B = (22017 - 22009) : 24
Tính :
\(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
(Giúp mình với, mk đang cần gấp)
B=\(\frac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)=\(\frac{2+2^2+2^3...+2^{2009}-1-2-2^2-...-2^{2008}}{\left(1-2^{2009}\right)}\)=\(\frac{2^{2009}-1}{1-2^{2009}}\)=-1
Vậy: B=-1
\(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
\(2B=\frac{2+2^2+2^3+...+2^{2009}}{1-2^{2009}}\)
\(2B-B=\frac{\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)}{1-2^{2009}}\)
\(B=\frac{2^{2009}-1}{1-2^{2009}}\)
\(B=-1\)
Cho HCN ABCD, kẻ AH vuông góc BD
a/ C/M: tam giác AHB đồng dạng Tam giác DAB
b/ C/M: AH2=BH.DH
c/ Gọi E,F lần lượt là Hình chiếu của H trên AB,AD. C/M: AE.AB=AF.AD
Giải giúp mình đang cần gấp lắm ạ, đặc biệt câu c ạ
a, Tính nhanh :
\(\frac{2009\times(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008})}{2008-\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{2006}{2007}+\frac{2007}{2008}\right)}\)
b, Cho \(\text{Q}=2+2^2+2^3+...+2^{10}\). Chứng tỏ rằng \(Q⋮3\).
có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 + 2^10]
Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]
Q = 2 . 3+2^3 .3 +... + 2^9 .3
Q = 3. [ 2 + 2^3 +... + 2^9]
Vậy Q chia hết cho 3
Tính nhanh:
\(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
\(B=\frac{1+2^2+......+2^{2008}}{1-2^{2009}}\)
Đặt \(C=1+2^2+.......+2^{2008}\)
\(\Rightarrow2C=2+2^2+.....+2^{2009}\)
\(\Rightarrow2C-C=2+2^2+......+2^{2009}-\left(1+2^2+.........+2^{2008}\right)\)
\(\Rightarrow C=2^{2009}-1\)
\(\Rightarrow B=\frac{2^{2009}-1}{1-2^{2009}}\)
Ồ bạn Phong Trần Nam hơi thiếu rồi
Khi B=(2^2009-1)/(1-2^2009)
=> B = (2^2009-1)/-(2^2009-1)
=> B = -1(Đây mới là kết quả cuối cùng)
Tính nhanh
\(A=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2010}}{\frac{2009}{1}+\frac{2008}{2}+...+\frac{1}{2009}}\)
Gọi \(S=\frac{2009}{1}+\frac{2008}{2}+...+\frac{1}{2009}\)
\(\Rightarrow S=\frac{2010-1}{1}+\frac{2010-2}{2}+...+\frac{2010-2009}{2009}\)
\(\Rightarrow S=2010-1+\frac{2010}{2}-1+...+\frac{2010}{2009}-1\)
\(\Rightarrow S=2010+\frac{2010}{2}+...+\frac{2010}{2009}-\left(1+1+..+1\right)\)
\(\Rightarrow S=2010+\frac{2010}{2}+...+\frac{2010}{2009}-2009\)
\(\Rightarrow S=\frac{2010}{2}+\frac{2010}{3}+...+\frac{2010}{2009}+1\)
\(\Rightarrow S=\frac{2010}{2}+\frac{2010}{3}+..+\frac{2010}{2009}+\frac{2010}{2010}\)
\(\Rightarrow S=2010\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)\)
Khi đó \(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}}{2010\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)}=\frac{1}{2010}\)
so sánh 2 phân số : \(A=\frac{2008^{2009}+2}{2008^{2009}-1};B=\frac{2008^{2009}}{2008^{2009}-3}\)
Giải giúp mình câu này với các bạn ơi, mình cám ơn nhiều:
tính giá trị biểu thức:
\(y=\frac{2008+\frac{2007}{2}+\frac{2006}{3}+......+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2008}+\frac{1}{2009}}\)