Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tô Hoài Dung
Xem chi tiết
Thắng Nguyễn
9 tháng 1 2017 lúc 20:58

Tổng quát \(n\in N\text{*};n\ge2\) ta có \(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+\frac{2\left(n+1-n-1\right)}{n\left(n+1\right)}}\)

\(=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+2\cdot1\cdot\frac{1}{n}-2\cdot1\cdot\frac{1}{n+1}-2\cdot\frac{1}{n}\cdot\frac{1}{n+1}}\)

\(=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n-1}\right)^2}=1+\frac{1}{n}-\frac{1}{n-1}\).Áp dụng vào ta có:

\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{2008^2}+\frac{1}{2009^2}}=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2008}-\frac{1}{2009}\)

\(=\left(1+1+...+1\right)+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\right)\)

Super dễ nhé !! Cho bn xử nốt

Đinh Thị Thảo Hiền
Xem chi tiết
Triệu Bảo Thư
Xem chi tiết

A = 12 - 22 + 32 - 42 + 52 - 62 + 72 - .......- 582 + 592

A =  12 + ( 32 - 22) + ( 52 - 42) + (72 - 62) +....+ ( 592 - 582)

A  =  1 +   ( 3-2)(2+3) + (5-4)(4+5) + (7-6)(6+7)+....+(59-58)(58+59)

A  =  1 + 2 + 3 + 4 + 5 + 6 + 7 + ....+ 58 + 59

A = ( 59 + 1).{ (59 - 1): 1 + 1 } : 2 

A = 1770

B =  \(\dfrac{2^{2016}-2^{2015}+2^{2014}-2^{2013}+2^{2012}-2^{2011}+2^{2010}-2^{2009}}{2^{2008}}\)

Đặt tử số là A 

ta có

  A =           22016 - 22015+22014 -  22013 + 22012 - 22011 + 22010- 22009

2 A= 22017- 22016 + 22015- 22014 +22013-22012 + 22011 - 22010 

2A + A = 22017 - 22009

       3A = 22017 - 22009

         A = (22017 - 22009):3

B = A : 8 = (22017- 22009) : 3 : 8

B = (22017 - 22009) : 24

Trần Bảo Thy
Xem chi tiết
Lê Hồ Trọng Tín
7 tháng 5 2019 lúc 8:38

B=\(\frac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)=\(\frac{2+2^2+2^3...+2^{2009}-1-2-2^2-...-2^{2008}}{\left(1-2^{2009}\right)}\)=\(\frac{2^{2009}-1}{1-2^{2009}}\)=-1

Vậy: B=-1

_Nhạt_
7 tháng 5 2019 lúc 8:41

\(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)

\(2B=\frac{2+2^2+2^3+...+2^{2009}}{1-2^{2009}}\)

\(2B-B=\frac{\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)}{1-2^{2009}}\)

\(B=\frac{2^{2009}-1}{1-2^{2009}}\)

\(B=-1\)

Real Love
7 tháng 5 2019 lúc 8:49

Cho HCN ABCD, kẻ AH vuông góc BD

a/ C/M: tam giác AHB đồng dạng Tam giác DAB

b/ C/M: AH2=BH.DH

c/ Gọi E,F lần lượt là Hình chiếu của H trên AB,AD. C/M: AE.AB=AF.AD

Giải giúp mình đang cần gấp lắm ạ, đặc biệt câu c ạ

Nguyễn Đức Trường
Xem chi tiết
BRILLIANT!!!!
17 tháng 9 lúc 22:11

có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 +  2^10]

Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]

Q = 2 . 3+2^3 .3 +... + 2^9 .3

Q = 3. [ 2 + 2^3 +... + 2^9]

Vậy Q chia hết cho 3

Trương Minh Phương
Xem chi tiết
Phong Trần Nam
7 tháng 5 2016 lúc 15:20

\(B=\frac{1+2^2+......+2^{2008}}{1-2^{2009}}\)

Đặt \(C=1+2^2+.......+2^{2008}\)

\(\Rightarrow2C=2+2^2+.....+2^{2009}\)

\(\Rightarrow2C-C=2+2^2+......+2^{2009}-\left(1+2^2+.........+2^{2008}\right)\)

\(\Rightarrow C=2^{2009}-1\)

\(\Rightarrow B=\frac{2^{2009}-1}{1-2^{2009}}\)

phạm nghĩa
7 tháng 5 2016 lúc 15:44

Ồ bạn Phong Trần Nam hơi thiếu rồi

Khi B=(2^2009-1)/(1-2^2009)

=> B = (2^2009-1)/-(2^2009-1)

=> B = -1(Đây mới là kết quả cuối cùng)

Quillen
Xem chi tiết
ʚɞONLYღYOU╰❥
8 tháng 1 2019 lúc 18:25

Gọi \(S=\frac{2009}{1}+\frac{2008}{2}+...+\frac{1}{2009}\)

\(\Rightarrow S=\frac{2010-1}{1}+\frac{2010-2}{2}+...+\frac{2010-2009}{2009}\)

\(\Rightarrow S=2010-1+\frac{2010}{2}-1+...+\frac{2010}{2009}-1\)

\(\Rightarrow S=2010+\frac{2010}{2}+...+\frac{2010}{2009}-\left(1+1+..+1\right)\)

\(\Rightarrow S=2010+\frac{2010}{2}+...+\frac{2010}{2009}-2009\)

\(\Rightarrow S=\frac{2010}{2}+\frac{2010}{3}+...+\frac{2010}{2009}+1\)

\(\Rightarrow S=\frac{2010}{2}+\frac{2010}{3}+..+\frac{2010}{2009}+\frac{2010}{2010}\)

\(\Rightarrow S=2010\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)\)

Khi đó \(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}}{2010\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}\right)}=\frac{1}{2010}\)

gửi gió lời yêu em
Xem chi tiết
Katherine Tr
Xem chi tiết