Rút gọn biểu thức sau
S = 1 + 1/3 + 1/3^2 + 1/3^3 + .......+ 1/3^n
Rút gọn biểu thức sau :
\(N=1+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3+\sqrt{8}}}+...+\dfrac{1}{\sqrt{2017+\sqrt{2017^2-1}}}\)
1) Rút gọn biểu thức sau :
1. \(\dfrac{1}{\sqrt{3}+1}\) + \(\dfrac{1}{\sqrt{3}-1}\) - 2\(\sqrt{3}\)
\(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}-2\sqrt{3}\)
\(=\dfrac{\sqrt{3}-1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}+\dfrac{\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-2\sqrt{3}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{3-1}-2\sqrt{3}\)
\(=\dfrac{2\sqrt{3}}{2}-2\sqrt{3}\)
\(=\sqrt{3}-2\sqrt{3}=-\sqrt{3}\)
Rút gọn biểu thức sau A =
3/1^2.2^2+5/2^2.3^2+7/3^2.4^2+...+(n+1)^2-1^2/n^2(n+1)^2
rút gọn biểu thức 1/1×2+1/2×3+1/3×4+1/(n-1)×n
Áp dụng CT nhân ba \(sin\left(3x\right)=3sinx-4sin^3x\) để rút gọn biểu thức sau:
\(S=\dfrac{1}{3}sin^3a+\dfrac{1}{9}sin^3\left(3a\right)+\dfrac{1}{27}sin^3\left(9a\right)+.....+\dfrac{1}{3^n}sin^3\left(3^{n-1}a\right)\)
Rút gọn các biểu thức sau:
a) A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +...+ \(\dfrac{1}{3^n}\)
b) B = \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\) +...+ \(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)
c) C = \(\dfrac{3}{2^2}\) x \(\dfrac{8}{3^2}\) x \(\dfrac{15}{4^2}\) ... \(\dfrac{899}{30^2}\)
(Mình cần gấp ạ)
b, B = \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\)+.....+ \(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)
2 \(\times\) B = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) - \(\dfrac{1}{2^3}\) + \(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)
2 \(\times\) B + B = 1 - \(\dfrac{1}{2^{100}}\)
3B = ( 1 - \(\dfrac{1}{2^{100}}\))
B = ( 1 - \(\dfrac{1}{2^{100}}\)) : 3
A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\)+ \(\dfrac{1}{3^3}\)+......+ \(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\)
A\(\times\) 3 = 3 + 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^2}\)+....+ \(\dfrac{1}{3^{n-1}}\)
A \(\times\) 3 - A = 3 - \(\dfrac{1}{3^n}\)
2A = 3 - \(\dfrac{1}{3^n}\)
A = ( 3 - \(\dfrac{1}{3^n}\)) : 2
C = \(\dfrac{3}{2^2}\) \(\times\) \(\dfrac{8}{3^2}\) \(\times\) \(\dfrac{15}{4^2}\) \(\times\) ...........\(\times\) \(\dfrac{899}{30^2}\)
C = \(\dfrac{1\times3}{2^2}\) \(\times\) \(\dfrac{2\times4}{3^2}\) \(\times\) \(\dfrac{3\times5}{4^2}\) \(\times\)........\(\times\) \(\dfrac{29\times31}{30^2}\)
C = \(\dfrac{1\times2\times\left(3\times4\times5\times....\times29\right)^2\times30\times31}{2^2\times\left(3\times4\times5\times.......\times29\right)^2\times30^2}\)
C = \(\dfrac{2\times\left(3\times4\times5\times.....\times29\right)^2\times30}{2\times\left(3\times4\times5\times.....\times29\right)^2\times30}\) \(\times\) \(\dfrac{1\times31}{2\times30}\)
C = 1 \(\times\) \(\dfrac{31}{60}\)
C = \(\dfrac{31}{60}\)
Rút gọn biểu thức sau :(x+1)^3-(x-1)^3-(x^3-1)-(x-1)*(x^2+x+1)
Rút gọn biểu thức sau:
a) S =\(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)
b) A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
AI LÀM NHANH MÀ ĐÚNG MIK TICK
Rút gọn các biểu thức sau:
a) A = 1+1/3^2+1/3^3+...+1/3^n
b) B = 1/2-1/2^2+1/2^3-1/2^4+...+1/2^99-1/2^100
c) C = 3/2^2 x 8/3^2 x 15/4^2 ... 899/30^2
A = 1 + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +.......+\(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\)
3\(\times\) A = 3 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+........+ \(\dfrac{1}{3^{n-1}}\)
3A - A = 3 + \(\dfrac{1}{3}\) - 1 - \(\dfrac{1}{3^n}\)
2A = \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)
A = ( \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)): 2
A = \(\dfrac{7.3^{n-1}-1}{3^n}\) : 2
A = \(\dfrac{7.3^{n-1}-1}{2.3^n}\)
B = \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\)+......+\(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)
2B = 2 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) - \(\dfrac{1}{2^3}\)+ \(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)
2B + B = 2 - \(\dfrac{1}{2^{100}}\)
3B = 2 - \(\dfrac{1}{2^{100}}\)
B = ( 2 - \(\dfrac{1}{2^{100}}\)): 3
B = \(\dfrac{2.2^{100}-1}{2^{100}}\) : 3
B = \(\dfrac{2^{101}-1}{3.2^{100}}\)