Cho B= 1/22+1/32+1/42+...+1/20162
Chứng tỏ B không phải là số tự nhiên
Cho B = 1/2^3 + 2/3^3 + 3/4^3 + ... + n-1 / n^3 và n là số tự nhiên lớn hơn 2. Chúng tỏ B không phải là số tư nhiên
\(\dfrac{1}{2^3}\) < \(\dfrac{2}{2^3}\) = \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{2}{3^3}\) < \(\dfrac{3}{3^3}\) = \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
............................................
\(\dfrac{n-1}{n^3}\)< \(\dfrac{n}{n^3}\) = \(\dfrac{1}{n^2}\) < \(\dfrac{1}{\left(n-1\right)n}\) = \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\)
Cộng vế với vế ta có:
B = \(\dfrac{1}{2^3}\)+\(\dfrac{2}{3^3}\)+...+\(\dfrac{n-1}{n^3}\)< 1 - \(\dfrac{1}{n}\) < 1
0<B<1 vậy B không phải là số tự nhiên (đpcm)
Cho số A=1/2+1/3+1/4+...+1/50
Chứng minh rằng A không phải là số tự nhiên
1/2 < 2(1/3 - 1/5)
1/3 < 2(1/5 - 1/7)
Mà a cũng không thể nhỏ hơn 1 được !
=======================
Xét 1/2 + 1/3 + 1/4
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3)
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1)
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9)
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2)
Tiếp tục xài chiêu đó, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3)
(1),(2),(3) ---> a > 3 (*)
Mặt khác
1/2 + 1/3 + 1/6 = 1 (4)
1/4 + 1/5 + 1/20 = 1/2 (5)
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6)
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7)
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8)
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9)
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10)
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**)
Từ (*) và (**) ---> 3 < a < 4 ---> a ko phải là số tự nhiên.
====================================
Cách khác (tổng quát hơn, trừu tượng hơn)
Quy đồng mẫu số :
Chọn mẫu số chung là M = BCNN(2;3;4;...;50) = k.2^5 = 32k (k là số tự nhiên lẻ)
Đặt T2 = M/2; T3 = M/3; ...; T50 = M/50
---> a = (T2+T3+ ... + T50) / M
Chú ý rằng T2,T3,...,T50 đều chẵn, chỉ riêng T32 = M/32 = k là lẻ, còn M chẵn
---> T2+T3+...T50 lẻ.Số lẻ ko thể là bội của số chẵn ---> a ko phải là số tự nhiên.
Anh bạn trên nhầm rồi ! Sao lại viết :
1/2 < 2(1/3 - 1/5)
1/3 < 2(1/5 - 1/7)
Mà a cũng không thể nhỏ hơn 1 được !
=======================
Xét 1/2 + 1/3 + 1/4
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3)
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1)
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9)
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2)
Tiếp tục xài chiêu đó, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3)
(1),(2),(3) ---> a > 3 (*)
Mặt khác
1/2 + 1/3 + 1/6 = 1 (4)
1/4 + 1/5 + 1/20 = 1/2 (5)
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6)
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7)
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8)
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9)
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10)
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**)
Từ (*) và (**) ---> 3 < a < 4 ---> a ko phải là số tự nhiên.
====================================
Cách khác (tổng quát hơn, trừu tượng hơn)
Quy đồng mẫu số :
Chọn mẫu số chung là M = BCNN(2;3;4;...;50) = k.2^5 = 32k (k là số tự nhiên lẻ)
Đặt T2 = M/2; T3 = M/3; ...; T50 = M/50
---> a = (T2+T3+ ... + T50) / M
Chú ý rằng T2,T3,...,T50 đều chẵn, chỉ riêng T32 = M/32 = k là lẻ, còn M chẵn
---> T2+T3+...T50 lẻ.Số lẻ ko thể là bội của số chẵn ---> a ko phải là số tự nhiên
Cho A=1+1/1+1/2+1/3+1/4+...+1/100.CMR A không phải là số tự nhiên.
CMR: A= 1/2 +1/3 +1/4+...+ 1/16 không phải là số tự nhiên
Các bạn đã giải theo 3 hướng sau đây :
Hướng 1 : Tính S = 1 201/280
Hướng 2 : Khi qui đồng mẫu số để tính S thì mẫu số chung là số chẵn. Với mẫu số
chung này thì 1/2 ; 1/3 ; 1/4 ; 1/5 ; 1/6 ; 1/7 sẽ trở thành các phân số mà tử số là số chẵn,
chỉ có 1/8 là trở thành phân số mà tử số là số lẻ. Vậy S là một phân số có tử số là số lẻ
và mẫu số là số chẵn nên S không phải là số tự nhiên.
Hướng 3 : Chứng minh 5/4 < S < 2
Thật vậy 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 > 6 x 1/8 = 3/4
nên S > 3/4 + 1/2 = 5/4
Mặt khác : 1/4 + 1/5 + 1/6 + 1/7 < 4 x 1/4 = 1
nên S < 1 + 1/2 + 1/3 + 1/8 = 1 + 1/2 + 11/24 <2
Vì 5/4 < S < 2 nên S không phải là số tự nhiên.
Cho A=\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{60}\)
Chứng minh A ko phải là số tự nhiên
Vì sao
Cho A và B là hai số tự nhiên.
Biết A = 20 + 21 + 22 + 23 = ...... + 299 và B = 2100
Chứng tỏ rằng A và B là hai số tự nhiên liên tiếp.
Ta có:
A=2^0+2^1+2^2+2^3+2^4+.....+2^99
2×A=2^1+2^2+2^3+2^4+.......+2^100
2×A-A= (2^1+2^2+2^3+....+2^100)-(2^0+2^1+2^2+.....+2^99(
A=2^100 - 2^0
A=2^100-1.
Lại có B=2^100; A=2^100-1
Có 2^100 và 2^100-1 là 2 số tự nhiên liên tiếp suy ra A và B là 2 số tự nhiên liên tiếp.
Vậy...........
Cho A=1+1/2+1/3+1/4+....+1/100. Chứng minh rằng A không phải là số tự nhiên.
Làm ơn giải dùm mình với !!!!!
Cho A =n\(^2\) + 3n + 1 với n là số tự nhiên . Chứng tỏ A không chia hết cho 2
Ta có
\(A=n^2+n+2n+1\)
\(A=n\left(n+1\right)+2n+1\)
ta thấy\(n\left(n+1\right)\) và \(2n\)đề chia hết cho 2 nên \(A=n\left(n+1\right)+2n+1\)ko chia hết cho 2
Vậy \(A=n^2+3n+1\) ko chia hết cho 2
cho p là số nguyên tố, a là số tự nhiên, a và p nguyên tố cùng nhau. chứng tỏ rằng a^(p-1) chia hết cho p