cm bất dẳng thức : a^2+b^2+c^2> hoặc bằng a(b+c)với mọi a,b,c
cm bất dẳng thức sau
a(a+b)(a+c)(a+b+c)+b2c2>0
C/m bất dẳng thức:
\( ( a^2 + b^2 ) (a^2 + 1) \geq 4 a^2 b \)
luôn đúng với mọi a, b.
C/m bất dẳng thức sau:
\((a^2 +b^2)(a^2+1) \geq 4a^2b\) luôn dúng với mọi a,b
CMR với mọi a,b,c thực thì
A) a^2+b^2+c^2+ab+Bc+ca lớn hơn hoặc bằng 0
B)a^2+b^2+c^2-ab-bc-ca lớn hơn hoặc băng 0
Cm hộ e ạ nếu CM đẳng thức thì giải thích đẳng thức cho e dc k ạ
A) a2+b2+c2+ab+bc+ca>=0 (*)
<=> 2a2+2b2+2c2+2ab+2bc+2ca>=0
<=> (a2+2ab+b2)+(b2+2bc+c2)+(c2+2ca+a2)>=0
<=> (a+b)2+(b+c)2+(c+a)2>=0
BĐT cuối luôn đúng với mọi a,b,c
Vậy BĐT (*) đc cm
Phần B cũng tương tự nhé
a) Ta có : a2 + b2 + c2 + ab + bc + ca = (a + b + c)2
Mà \(\left(a+b+c\right)^2\ge0\forall x\)
Nên : a2 + b2 + c2 + ab + bc + ca \(\ge0\forall x\)
b) hình như sai đề rồi bạn à !
CM các bđt sau
a) x(x+1)(x+2)(x+3)+1 lớn hơn hoặc bằng 0 với mọi số thực x
b) \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)lớn hơn hoặc bằng \(\left(ax+by+cz\right)^2\) với mọi số thức a,b,c,x,y,z
giúp mình với
a: =(x^2+3x)(x^2+3x+2)+1
=(x^2+3x)^2+2(x^2+3x)+1
=(x^2+3x+1)^2>=0 với mọi x
b: (a^2+b^2+c^2)(x^2+y^2+z^2)-(ax+by+cz)^2
=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz
=(a^2y^2-2axby+b^2x^2)+(a^2z^2-2azcx+c^2x^2)+(b^2z^2-2bzcy+c^2y^2)
=(ay-bx)^2+(az-cx)^2+(bz-cy)^2>=0(luôn đúng)
Chứng minh BĐT :
Với mọi số thực a,b,c bất kỳ :a^2+b^2+c^2 lớn hơn hoặc bằng ab+bc+ca
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
-Dấu "=" xảy ra khi \(a=b=c\)
bài 3 : chứng minh các bất đẳng thức sau
a, (a+b/2)2 > hoặc bằng ab
b, a/b +b/a > hoặc bằng 2 với a,b>0
c/m các bất dẳng thức
a)\(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
b)\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
a ) Giả sử : \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow4\left(a^2+b^2\right)\ge2\left(a+b\right)^2\)
\(\Leftrightarrow4a^2+4b^2\ge2a^2+4ab+2b^2\)
\(\Leftrightarrow2a^2+2b^2\ge4ab\)
\(\Leftrightarrow2a^2+2b^2-4ab\ge0\)
\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow2\left(a-b\right)^2\ge0\) ( Điều này luôn đúng )
\(\Rightarrow\) Điều giả sử là đúng
\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
\(\left(đpcm\right)\)
b ) Giả sử : \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\Leftrightarrow\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)
\(\Leftrightarrow9\left(a^2+b^2+c^2\right)\ge3\left(a+b+c\right)^2\)
\(\Leftrightarrow9\left(a^2+b^2+c^2\right)\ge3\left(a^2+b^2+c^2+2ab+2ac+2bc\right)\)
\(\Leftrightarrow9\left(a^2+b^2+c^2\right)\ge3\left(a^2+b^2+c^2\right)+6\left(ab+ac+bc\right)\)
\(\Leftrightarrow6\left(a^2+b^2+c^2\right)\ge6\left(ab+ac+bc\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)
( Điều này luôn đúng )
\(\Rightarrow\) Điều giả sử là đúng
\(\Rightarrow\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\left(đpcm\right)\)
:D
Chứng minh bất đẳng thức:
a) a^2 + b^2 + c^2 + \(\frac{3}{4}\)lớn hơn hoặc bằng - a - b - c
b) a^2 + b^2 + 4 lớn hơn hoặc bằng ab + 2(a+ b)
\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
\(\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)
\(\Leftrightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)
\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng)
Vậy \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)
b ) chuyển vế tương tự