Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cường nguyễn văn
Xem chi tiết
Nguyễn Xuân Hồng Ngọc
Xem chi tiết
Nguyễn Xuân Hồng Ngọc
Xem chi tiết
Bùi Đạt Khôi
Xem chi tiết
NGUYEN HAI ANH
7 tháng 9 2017 lúc 21:18

A) a2+b2+c2+ab+bc+ca>=0 (*)

<=> 2a2+2b2+2c2+2ab+2bc+2ca>=0

<=> (a2+2ab+b2)+(b2+2bc+c2)+(c2+2ca+a2)>=0

<=> (a+b)2+(b+c)2+(c+a)2>=0

BĐT cuối luôn đúng với mọi a,b,c 

Vậy BĐT (*) đc cm

Phần B cũng tương tự nhé

l҉o҉n҉g҉ d҉z҉
7 tháng 9 2017 lúc 21:19

a) Ta có : a2 + b2 + c2 + ab + bc + ca = (a + b + c)2

Mà \(\left(a+b+c\right)^2\ge0\forall x\)

Nên : a2 + b2 + c2 + ab + bc + ca \(\ge0\forall x\)

b) hình như sai đề rồi bạn à !

Hơi khó
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 4 2023 lúc 23:41

a: =(x^2+3x)(x^2+3x+2)+1

=(x^2+3x)^2+2(x^2+3x)+1

=(x^2+3x+1)^2>=0 với mọi x

 

b: (a^2+b^2+c^2)(x^2+y^2+z^2)-(ax+by+cz)^2

=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz

=(a^2y^2-2axby+b^2x^2)+(a^2z^2-2azcx+c^2x^2)+(b^2z^2-2bzcy+c^2y^2)

=(ay-bx)^2+(az-cx)^2+(bz-cy)^2>=0(luôn đúng)

khangbangtran
Xem chi tiết
Trần Tuấn Hoàng
1 tháng 5 2022 lúc 14:32

\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

-Dấu "=" xảy ra khi \(a=b=c\)

 

hỏa quyền ACE
Xem chi tiết
Đinh Diệp
Xem chi tiết
Khôi Bùi
10 tháng 9 2018 lúc 17:09

a ) Giả sử : \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow4\left(a^2+b^2\right)\ge2\left(a+b\right)^2\)

\(\Leftrightarrow4a^2+4b^2\ge2a^2+4ab+2b^2\)

\(\Leftrightarrow2a^2+2b^2\ge4ab\)

\(\Leftrightarrow2a^2+2b^2-4ab\ge0\)

\(\Leftrightarrow2\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow2\left(a-b\right)^2\ge0\) ( Điều này luôn đúng )

\(\Rightarrow\) Điều giả sử là đúng

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\left(đpcm\right)\)

b ) Giả sử : \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow9\left(a^2+b^2+c^2\right)\ge3\left(a+b+c\right)^2\)

\(\Leftrightarrow9\left(a^2+b^2+c^2\right)\ge3\left(a^2+b^2+c^2+2ab+2ac+2bc\right)\)

\(\Leftrightarrow9\left(a^2+b^2+c^2\right)\ge3\left(a^2+b^2+c^2\right)+6\left(ab+ac+bc\right)\)

\(\Leftrightarrow6\left(a^2+b^2+c^2\right)\ge6\left(ab+ac+bc\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

( Điều này luôn đúng )

\(\Rightarrow\) Điều giả sử là đúng

\(\Rightarrow\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\left(đpcm\right)\)

:D

Hoàng Đức Mạnh
10 tháng 9 2018 lúc 19:45

Mẹ Trang đang chép ak

tibarca41
Xem chi tiết
Đinh Đức Hùng
18 tháng 7 2017 lúc 12:18

\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

\(\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)

\(\Leftrightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng)

Vậy \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

b ) chuyển vế tương tự