cho tam giac ABC can tai A dg cao AH cat tia phan giaccua gocA tai D . CMR :BD vuong goc AC
cho tam giac ABC vuong tai A . duong cao AH . tia phan giac HAC cat BC tai D
CMR . tam giac ABD can
co phan giac goc B cat AH tai I . CMR. DI // AC
So sanh HD va DC
tam giac ABC tu tai A, AC lon hon AB. Dg phan giac BD, ke AH vuong goc BD, cat BC tai E , tu D ke dg vuong goc voi BD, cat BA tai M, cat BC tai N
a) CM : AM = EN
b) Tia ED cat BA tai F. CM : MF = NC
cho tam giac ABC vuong can tai A .ke AH vuong goc voi BC tai H,BD la phan giac goc B(D thuoc AC) tu D ke duong thang vuong goc BC cat BC tai E cat AB tai F.duong thang BD cat AH tai P,cat AE tai N a CM:CP la phan giac ACB b, so sanh DE va DF c,ke CM vuong goc AE tai M .CM:BN=AM
Cho tam giac ABC vuong tai A, tia phan giac goc B cat AC tai D. Ke AE vuong goc voi BD (E thuoc BD) , AE cat BC o K. Ke AH vuong goc voi BC . Goi I la giao diem cua AH va BD
a) CMR: DK vuong goc voi BC
b) IK // AC
cho tam giac ABC vuong can tai A .ke AH vuong goc voi BC tai H,BD la phan giac goc B(D thuoc AC) tu D ke duong thang vuong goc BC cat BC tai E cat AB tai F.duong thang BD cat AH tai P,cat AE tai N a CM:CP la phan giac ACB b, so sanh DE va DF c,ke CM vuong goc AE tai M .CM:BN=AM
cac ban giup minh vs minh dang can gap
cho tam giac abc co goc c+90 do=goca ve ah vuong goc bc duong thang vuong goc voi ab tai a cat bc tai d goi m la giao diem cua cac tia phan giac goc bah va adh chung minh goc bah=2c chung minh mavuong goc ac
cho tam giac ABC vuong tai A duong cao AH ten tia HC lay diem D sao cho HD=HB
a) Tam giac ABC la tam giac gi Vi sao . Neu goc C=30 thi tam giac ABD la tam giac gi
b) Tu Cve duong thang vuong goc voi tia AD tai M . CM: CB la tia phan giac ACM
c) Tia AH cat CM tai Q . CM tam giac ACQ can
d) CM: QD vuong goc voi AC
a: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
DO đó; ΔABD cân tại A
b: Ta có: \(\widehat{MCB}=90^0-\widehat{CDM}\)
\(\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{ADH}=90^0-\widehat{CDM}\)
=>góc MCB=góc ACB
hay CB là phân giác của góc AMC
c: Xét ΔCAQ có
CH là đường phân giác
CH là đường cao
Do đó: ΔCAQ cân tại C
cho tam giac ABC v uong tai A (AB < AC ) , ke AH vuong goc voi BC tai H . tren canh AC lay diem I sao cho AH =AI . qua I ke duong thang vuong goc voi A C , cat BC tai D
a, CMR : tam giac AHD = tam giac AID va` AD la tia phan giac cua ∠HAC
b, tia ID cat tia AH tai M . CMR △MCD can
c, go.i N la` trung diem cua MC . CMR AN,MI,BC do^`ng quy
a: Xét ΔAHD vuông tại H và ΔAID vuông tại I có
AD chung
AH=AI
=>ΔAHD=ΔAID
=>góc HAD=gócIAD
=>AD là phân giác của góc HAI
b: Xét ΔDHM vuông tại H và ΔDIC vuông tại I có
DH=DI
góc HDM=góc IDC
=>ΔDHM=ΔDIC
=>DM=DC
=>ΔDMC cân tại D
c: AH+HM=AM
AI+IC=AC
mà AH=AI và HM=IC
nên AM=AC
=>ΔAMC cân tại A
mà AN là trung tuyến
nên AN vuông góc MC
Xét ΔCAM có
AN,MI,CH là các đường cao
=>AN,MI,CH đồng quy
Cho tam giac abc tia phan giac cua goc abc cat canh ac tai d tu d ke duong thang //bc dg thanh nay cat canh ab tai diem e tia phan giac cua goc aed cat ad tai f ctr a,tam giac ebdco 2 goc bang nhau b,ef//bd