toan HACK NAO
100+2=200
316+2=732
103-2+2=103
Giúp vs ạaa
(101+102+103+...+200) + (-1-2-3-...-100)
(101+102+...+200)+(-1-2-3-...-100)
=(101-1)+(102-2)+...+(200-100)
=100+100+...+100
=100*100=10000
1+2+3+4+5+.....+100-101-102-103-....-200=
\(\text{1+2+3+4+5+...+100-101-102-103-...-200}\)
\(\text{=1+2+3+4+5+...+100-(100+1)-(100+2)-(100+3)-...-(100+100)}\)
\(\text{=1+2+3+4+5+...+100-100-1-100-2-100-3-...-100-100}\)
\(\text{=(1+2+3+4+5+...+100-1-2-3-...-100)-100-100-100-...-100}\)(có 100 số 100)
\(=0-100-100-100-...-100\)(có 100 số 100)
\(=-10000\)
Tính hợp lí:
a, 25 - (62 + 25 - 12)
b, -24 - (68 - 24) + 2.[34 + (-94)]
c, (101 + 102 + 103 + .... + 200) + (-1 - 2 - 3 - ..... - 100)
a, =25- 62-25 +12
= (25-25)+12-62
= -50
b, = -24 -68+24 + 2. (-60)
= (-24+24)-68 + -120
= -188
c,
Giai ho Minh Vo bai tap toan 5 tap 2 bai 103 nhe!HELP
đồng nghiệp hả kết ban nha ?????????????????
bn ghi là sách giải bài tập toán lớp 5 tập 2 rồi ấn trang là ra ấy mà
hihi. k mk nha bn
tính tổng B=\(1^2+2^2+3^2+....+99^2+100^2\)
tính tổng C=\(101^2+102^2+103^2+....+199^2+200^2\)
tính tổngT=1.100+2.99+3.98+....+99.2+100.1
Chứng minh : \(\dfrac{1}{2}< \dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+......................+\dfrac{1}{198}+\dfrac{1}{199}+\dfrac{1}{200}< \dfrac{100}{101}\)
Ta có:\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}=\dfrac{100}{200}=\dfrac{1}{2}\)
Lại có:
\(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{200}< \dfrac{1}{101}+\dfrac{1}{101}+...+\dfrac{1}{101}=\dfrac{100}{101}\)
Vậy ...
Những dãy trên đều có 100 số hạng.
Các bn ghi rõ cách làm nha mk đang cần gấp nhank mk tick cho
A= 3/7*10+3/10*13+...+3/100*103
B= 2/7*10+2/10*13+...+2/100*103
\(\frac{3}{7.10}+\frac{3}{10.13}+....+\frac{3}{100.103}\)
\(=\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+....+\frac{1}{100}-\frac{1}{103}\)
\(=\frac{1}{7}-\frac{1}{103}\)
\(=\frac{96}{721}\)
\(\frac{2}{7.10}+\frac{2}{10.13}+...+\frac{2}{100.103}\)
\(=\frac{2}{3}\left(\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{2}{3}\left(\frac{1}{7}-\frac{1}{103}\right)\)
\(=\frac{2}{3}.\frac{96}{721}\)
\(=\frac{64}{721}\)
Các bn ghi rõ cách giải nha mk đang rất cần gấp nhank mk tick cho
A= 3/7*10+3/10*13+...+3/100*103
B= 2/7*10+2/10*13+...+2/100*103
\(A=\)\(\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{100.103}\)
\(A=\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\)
\(A=\frac{1}{7}-\frac{1}{103}\)
\(A=\frac{96}{721}\)
\(B=\frac{2}{7.10}+\frac{2}{10.13}+...+\frac{2}{100.103}\)
\(B=2\left(\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{100.103}\right)\)
\(3B=2.3\left(\frac{1}{7.10}+\frac{1}{10.13}+...+\frac{1}{100.103}\right)\)
\(3B=2\left(\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{100.103}\right)\)
\(3B=2\left(\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(3B=2\left(\frac{1}{7}-\frac{1}{103}\right)\)
\(3B=2.\frac{96}{721}\)
\(3B=\frac{192}{721}\)
\(\Rightarrow B=\frac{192}{721}:3\)
\(B=\frac{64}{721}\)
\(A=\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{100.103}\)
\(A=\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\)
\(A=\frac{1}{7}-\frac{1}{103}\)
\(A=\frac{96}{721}\)
Vậy \(A=\frac{96}{721}\)
\(B=\frac{2}{7.10}+\frac{2}{10.13}+...+\frac{2}{100.103}\)
\(B=\frac{2}{3}.\left(\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{100.103}\right)\)
\(B=\frac{2}{3}.\left(\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{2}{3}.\left(\frac{1}{7}-\frac{1}{103}\right)\)
\(B=\frac{2}{3}.\frac{96}{721}\)
\(B=\frac{64}{721}\)
Vậy \(B=\frac{64}{721}\)
_Chúc bạn học tốt_
Chứng tỏ rằng: 1.3.5.7.9. ... .197.199 = 101/2 . 102/2 . 103/2 . ... . 200/2
Giúp mình nhé các bạn!
Ta có :
\(1.3.5.7.....199\)
\(=\frac{1.2.3.4.5.6.7.....198.199.200}{2.4.6.....198.200}\)
\(=\frac{\left(1.2.3.....99.100\right)\left(101.102.....200\right)}{\left(1.2.3.....99.100\right)\left(2.2.2.....2.2\right)}\)
\(=\frac{101.102.....200}{2.2.....2}\)
\(=\frac{101}{2}.\frac{102}{2}.....\frac{200}{2}\left(đpcm\right)\)