bai1 cho da thuc f(x)=ax^2 + bx+c biet 5a+b+2c=0
chung minh f(1),f(2) lớn hơn và bằng 0
cho da thuc f(x)=ax^2+bx+c voi a,b,c la cac so thuc . Biet rang f(0), f(1), f(2) co gia tri nguyen . cmr : 2a, 2b cung co gt nguyen
chof(x)=ax^2+bx+cvoi a b c là các số hữu tỉ thỏa mãn 13a+b+2c=0 cmr f(-2)xf(3),nho hon bang 0
Toan lop 7 ma sao kho the?!!!!! Minh bo tay!
cho f(x) =ax*2+bx+c biet f(1) .f(2) .f(0) nguyen .chung minh da thuc f(x) nguyen voi moi x
cho đa thức f{x}=ax^2+bx+c . C/M nếu 5a-b+2c=0 thì f{2}.f{1} nhỏ hơn hoặc bằng 0
Cho f(x)=ax^2+bx+c biết 5a+b+2c =0
Cm :f(2)xf(-1) nhỏ hơn hoặc bằng 0
cho đa thức f(x) = ax^2 + bx + c biết 5a + b + 2c = 0
CMR f(-1) . f(2) nhỏ hơn hoặc = 0
Ta có : f(-1) = a. (-1)2 + b(-1) + c = a - b + c
f(2) = a.22 + b.2 +c = 4a + 2b + c
Nên: f(-1) + f(2) = ( a - b + c ) + ( 4a + 2b + c )= 5a + b + 2c = 0
=> f(-1) = -f(2)
Do đó : f(-1) . f(2) =-f(2) . f(2) = -[f(2)]2 \(\le\)0
Vậy....
#)Giải :
Ta có f(2) = 4a + 2b + c
f(-1)= a - b + c
=> f(2) + f(-1) = 4a + 2b + c + a - b + c
= 5a + b + 2c
Mà 5a + b + 2c = 0 => f(2) + f(-1) = 0 => f(2) = f(-1)
=> f(-1).f(2) ≤ 0 ( đpcm )
Câu hỏi của Nguyễn Thùy Linh - Toán lớp 7 - Học toán với OnlineMath
Cho đa thức f (x) = ax2 + bx + c thỏa mãn 25a + b + 2c = 0. Chứng minh f (-3) × f (-4) lớn hơn hoặc bằng 0
cho đa thức f(x)= ax^2+bx+c với a, b, c là các hệ số thỏa mãn 13a+b+2c=0. chứng tỏ rằng f(-2).f(3)lớn hơn hoặc bằng 0
13a+b+2c=0
=>b=-13a-2c
f(-2)=4a-2b+c=4a+c+26a+4c=30a+5c
f(3)=9a+3b+c=9a+c-39a-6c=-30a-5c
=>f(-2)*f(3)<=0
cho đa thức F(x)=ax^2+bx+c biết 5a+b+2c
cm rằng F(2) *F(-1) bé hơn hoặc bằng 0
Cho y=f(x)=ax^2+bx+c
Biết 5a+b+2c=0
Chứng tỏ : f(-1).f(2)<0