Cho tam giác ABC, có BH và CK là 2 đường phan giác biết BH = CK. CMR tam giác ABC cân
Cho tam giác ABC có các đường cao BH và CK (H thuộc CA và K thuộc AB). Biết rằng AB+CK=AC+BH. Chứng minh rằng tam giác ABC hoặc là tam giác cân hoặc là tam giác vuông
△AKC∼△AHB (g-g) \(\Rightarrow\dfrac{CK}{BH}=\dfrac{AC}{AB}\Rightarrow\dfrac{CK}{BH}=\dfrac{AC}{AB}=\dfrac{AC-CK}{AB-BH}=1\)
\(\Rightarrow AB=AC\Rightarrow\)△ABC cân tại A.
\(AB\ge BH\Rightarrow AB+CK\ge BH+CK\Rightarrow AC+BH\ge BH+CK\Rightarrow AC\ge CK\)-Dấu bằng xảy ra khi và chỉ khi \(A\equiv H\Leftrightarrow\)△ABC vuông tại A.
Cho tam giác ABC kẻ BH vuông góc với AC, CK vuông góc với AB. Biết BH = CK. CMR tam giác ABC cân
xét tgAKC vuông tại K (CK vuông góc với AB) và tgAHB vuông tại H (BH vuông góc với AC) có
BH=CK (gt)
gA chung => tgAKC = tgAHB (cạnh góc vuông-góc nhọn)
=>AC=AB (hai cạnh tương ứng)
=> tgABC cân tại A
a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
góc H = góc C (= 90°)
AB = AC (T.g ABC vuông cân)
góc ABH = góc CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>góc HBM = góc MCK (So Le Ttrong)(1)
Mặt khác góc MAE + góc AEM = 90°(2)
Và góc MCK + góc CEK = 90°(3)
Và góc AEM = góc CEK (4)
Từ 2,3,4 => góc MAE = góc ECK (5)
Từ 1,5 => góc HBM = góc MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét tam giác MBH và tam giác MAK có:
MB = AM (cmt)
góc HBM = góc MAK(cmt)
BH = AK (cmt)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên tam giác AMH = tam giác CMK (c.c.c)
=> góc AMH = góc CMK; mà góc AMH + góc HMC = 90 độ
=> góc CMK + góc HMC = 90° hay góc HMK = 90°
Tam giác HMK có MK = MH và góc HMK = 90° nên vuông cân tại M (đpcm).
Cho tam giác ABC cân tại A, trên BC kéo dài lấy điểm M và N sao cho BM = CN, từ B, kẻ BH vuông góc với AM, từ C, kẻ CK vuông góc với AN, BH và CK cắt nhau tại D. CMR:
a. Tam giác AMN cân
b. BH = CK
c. AH = AK
d. Tam giác BCD cân
e. Trong TH tam giác ABC cân, có góc A = 60 độ. CMR: tam giác BCD đều
*Giúp Mình Nhanh Với, Cần Gấp*
Cho tam giác ABC cân tại A, trên BC kéo dài lấy điểm M và N sao cho BM = CN, từ B, kẻ BH vuông góc với AM, từ C, kẻ CK vuông góc với AN, BH và CK cắt nhau tại D. CMR:
a. Tam giác AMN cân
b. BH = CK
c. AH = AK
d. Tam giác BCD cân
e. Trong TH tam giác ABC cân, có góc A = 60 độ. CMR: tam giác BCD đều
*Giúp Mình Nhanh Với, Cần Gấp*
Cho hình tam giác ABC cân tại A có BH và CK là 2 đường cao của tam giác . Chứng minh BCHK Là hình thang cân
ta có:
Hình tự vẽ nha.
Lời giải:
+ Xét\(\Delta AHB\)và\(\Delta AKC\)có:
\(\widehat{AHB}=\widehat{AKC}=90^0\)
\(AB=AC\)(Do\(\Delta ABC\)cân tại A)
\(\widehat{HAB}=\widehat{KAC}\)
Do đó:\(\Delta AHB=\Delta AKC\)(g-c-g)
\(\Rightarrow AH=AK\)
\(\Rightarrow\Delta AHK\)cân tại A
\(\Rightarrow\widehat{AKH}=\frac{180^0-\widehat{A}}{2}\)
Mà\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(Do\(\Delta ABC\)cân tại A)
\(\Rightarrow\widehat{AKH}=\widehat{ABC}\)
\(\Rightarrow HK//BC\)
+Xét tứ giác BCKH có\(HK//BC\)
=> BCHK là hình thang
Mà\(\widehat{B}=\widehat{C}\)(Do\(\Delta ABC\)cân tại A)
=> BCHK là hình thang cân (đpcm)
Vậy BCHK là hình thang cân
Cho tam giác ABC cân tại A có BH và CK là hai đường cao của tam giác. Chứng minh BCHK là hình thang cân
Chứng minh DBKC = DCHB (ch-gnh)
Suy ra CK = BH & AK = AH
A K H ^ = 180 0 − K A H ^ 2 = A B C ^ h a y K H / / B C .
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc A chung
Do đó: ΔABH=ΔACK
Suy ra: AH=AK
Xét ΔABC có AH/AC=AK/AB
nên HK//BC
=>BKHC là hình thang
mà BH=CK
nên BKHC là hình thang cân
Bài 1. Cho tam giác ABC, trung tuyến AM. Kẻ BH, CK vuông góc với AM. CMR: BH // CK; BH = CK. CMR: BK // CH; BK = CH. Gọi E là trung điểm của BK, F là trung điểm của CH. CMR: E, M, F thẳng hàng. CMR: tam giác AEF cân.
cho tam giác ABC cân tại A, góc A nhọn. kẻ BH vuông góc AC tại H, kẻ CK vuông góc AB tại K. gọi D là giao điểm của BH và CK.
a) cmr BH=CK,
2) cmr tam giác DBC cân
3) qua D kẻ đường thẳng cắt đoạn thẳng BK tại E và cắt đoạn Thẳng CH tại F sao cho AE<À. Cmr: DE,DF