cho a và b dương và a + b + ab = 8. tìm GTNN của P = a^4 + b^4
Cho 2 số thực dương a,b khác 0 thỏa mãn \(2a^2+\frac{b^2}{4}+\frac{1}{a^2}=4\)
Tìm GTNN và GTLN của S= ab+2019
Cho các số thực a,b,c dương thỏa mãn ab+2bc+2ca=4.Tính gần đúng GTNN của P=a2+2b2+4c2 và tìm giá trị gần đúng của a,b,c để P đạt GTNN đó
Cho a, b là các số dương thỏa mãn a+b=6 . Tìm GTNN của A= 4/a + 1/ab
\(A=\frac{1}{a}\)\(+\frac{1}{a}\)\(+\frac{1}{a}\)\(+\frac{1}{a}\)\(+\frac{1}{ab}\)\(\ge\frac{25}{4a+ab}\)\(=\frac{25}{a\left(b+4\right)}\)\(\ge\frac{25}{\frac{1}{4}\left(a+b+4\right)^2}\)\(=1\)
\(A_{min=1}\)\(khi\){ a = 5
b = 1
Lần đầu tiên làm toán lớp 8 , có gì sai sót mong bạn chỉ ra hộ mình
\(A=\frac{4}{a}+\frac{1}{ab}=\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{ab}\)
\(\Rightarrow A=\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{ab}\ge\frac{5^2}{4a+ab}=\frac{25}{a\left(4+b\right)}\)
\(=\frac{25}{\frac{1}{4}\left(a+b+4\right)^2}=\frac{25}{\frac{1}{4}.100}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{25}{a\left(b+4\right)}=1\Leftrightarrow a\left(b+4\right)=25\)
Mà a,b dương => MinA = 1 <=> a = 1 ; b = 5 ( tmđk )
a, cho a=+b+c =1; a,b,c dương
tìm GTNN: A= a/b2+1 + b/c2+1 + c/a2+1
b, cho a,b,c dương có tổng =2
tìm GTNN; B= a/ab+2c + b/bc+2a + c/ca+2b
c, cho a,b,c dương và a+b+c<1
tìm GTNN: C= 1/a2+2bc + 1/ b2+2ac + 1/c2+2ab
1. Cho \(x,y,z>0\) và \(x^3+y^2+z=2\sqrt{3}+1\). Tìm GTNN của biểu thức \(P=\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\)
2. Cho \(a,b>0\). Tìm GTNN của biểu thức \(P=\dfrac{8}{7a+4b+4\sqrt{ab}}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Cho hai số dương a và b thỏa mãn:a+b≤2. Tìm GTNN của biẻu thức:M=\(\dfrac{1}{a^2+b^2}+ab+{2}{ab}\)
Bạn xem lại xem viết đề đã đúng chưa vậy?
Cho hai số dương a và b thỏa mãn: \(a+b\le4\). Tìm GTNN của biểu thức: \(M=\dfrac{1}{a^2+b^2}+ab+\dfrac{25}{ab}\)
\(A=\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+\left(ab+\dfrac{16}{ab}\right)+\dfrac{17}{2ab}\)
\(A\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{16ab}{ab}}+\dfrac{17}{\dfrac{2\left(a+b\right)^2}{4}}\)
\(A\ge\dfrac{4}{\left(a+b\right)^2}+8+\dfrac{34}{\left(a+b\right)^2}\ge\dfrac{4}{4^2}+8+\dfrac{34}{4^2}=\dfrac{83}{8}\)
Dấu "=" xảy ra khi \(a=b=2\)
Cho 2 số dương a và b thỏa mãn: \(a+b\le4\). Tìm GTNN của biểu thức: \(M=\dfrac{1}{a^2+b^2}+ab+\dfrac{25}{ab}\)
Bài 1:Cho a,b,c là các số thực dương thỏa mãn a+b=1.Tìm GTNN của bt sau
\(a,A=\frac{2}{ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\)
\(b,B=\frac{1}{ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\)
Bài 2:Cho a,b,c là 3 số dương thỏa mãn a+b+c=9.tìm GTNN của bt
\(a,A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}\) \(b,B=\frac{a^3}{c^2+b^2}+\frac{b^3}{a^2+c^2}+\frac{c^3}{a^2+b^2}\)
Bai 3:Cho x,y là 2 số dương thỏa mãn \(x^2+y^2=4\) Tìm GTNN của bt \(A=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
Bài 4 Cho a,b,c là các số không âm thỏa mãn a+b+c=1 Tìm GTLN của bt
\(a,A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\) \(b,B=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}\)
1a
\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)
\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(A_{min}=\frac{161}{16}\)
1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)
\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)
Bài 2 Dùng Cauchy-Schwarz dạng Engel là ra:D
Bài 3:Đừng vội dùng Cauchy-Schwarz dạng Engel ngay kẻo bị phức tạp:v Thay vào đó hãy khai triển nó ra:
\(A=x^2+y^2+2\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{1}{x^2}+\frac{1}{y^2}\)
\(\ge4+2.2+\frac{4}{x^2+y^2}=4+4+1=9\)
Đẳng thức xảy ra khi \(x=y=\sqrt{2}\)
Bài 4: Dùng Cauchy or Bunhiacopxki là ok!