Tìm các số nguyên x thỏa mãn :
\(\left(x-\dfrac{1}{2}\right).\left(x+\dfrac{3}{4}\right)\le0\)
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Số nguyên \(x\) thỏa mãn \(\left(\dfrac{3}{4}-\dfrac{2}{3}\right)+\dfrac{5}{6}< x\le\dfrac{4}{5}-\left(\dfrac{3}{10}-\dfrac{5}{4}\right)\) là:
A. \(x=1\) B. \(x=0\) C. \(x=2\) D. \(x\in\left\{0;1\right\}\)
So sánh 3 phân số: \(\dfrac{9}{170};\dfrac{9}{230};\dfrac{53}{144}\)
Câu 1: D
Câu 3: 53/144>9/170>9/230
Tìm các cặp số nguyên \(\left(x;y\right)\) thỏa mãn \(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)
Ta thấy \(2x^2< 4\) \(\Leftrightarrow x^2< 2\) \(\Leftrightarrow x^2=1\) (do \(x\ne0\))
Thế vào pt đề bài, ta có \(3+\dfrac{y^2}{4}=4\)
\(\Leftrightarrow\dfrac{y^2}{4}=1\)
\(\Leftrightarrow y^2=4\)
\(\Leftrightarrow y=\pm2\)
Vậy, các cặp số (x; y) thỏa ycbt là \(\left(1;2\right);\left(-1;-2\right);\left(1;-2\right);\left(-1;2\right)\)
Tìm các cặp số nguyên (x; y) thỏa mãn: \(\left|x^2-2x\right|-\dfrac{1}{2}< y< 2-\left|x-1\right|\)
Tìm tất cả các số thực dương x,y,z thỏa mãn :
\(\left(1+\dfrac{x}{y+z}\right)^2+\left(1+\dfrac{y}{x+z}\right)^2+\left(1+\dfrac{z}{x+y}\right)^2=\dfrac{27}{4}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$\text{VT}(1^2+1^2+1^2)\geq (1+\frac{x}{y+z}+1+\frac{y}{x+z}+1+\frac{z}{x+y})^2$
$\Leftrightarrow 3\text{VT}\geq (3+\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y})^2$
$ = \left[3+\frac{x^2}{xy+xz}+\frac{y^2}{yz+yx}+\frac{z^2}{zy+zx}\right]^2$
$\geq \left[3+\frac{(x+y+z)^2}{2(xy+yz+xz)}\right]^2$
$\geq \left[3+\frac{3(xy+yz+xz)}{2(xy+yz+xz)}\right]^2=\frac{81}{4}$
$\Rightarrow \text{VT}\geq \frac{27}{4}$
Dấu "=" xảy ra khi $x=y=z>0$
Áp dụng BĐT Bunhiacopxky:
Dấu "=" xảy ra khi
Tìm x thỏa mãn cả 2 bpt
a,\(\dfrac{\left(x-3\right)^2}{3}-\dfrac{\left(2x-1\right)^2}{12}< x\)
b,\(2+\dfrac{3\left(x+1\right)}{3}< 3-\dfrac{x-1}{4}\)
a, \(\dfrac{4\left(x-3\right)^2-\left(2x-1\right)^2-12x}{12}< 0\)
\(\Rightarrow4\left(x^2-6x+9\right)-4x^2+4x-1-12x< 0\)
\(\Leftrightarrow-32x+35< 0\Leftrightarrow x>\dfrac{35}{32}\)
b, \(\dfrac{24+12\left(x+1\right)-36+3\left(x-1\right)}{12}< 0\)
\(\Rightarrow-12x+15x+9< 0\Leftrightarrow3x< -9\Leftrightarrow x>-3\)
Tìm x,y biết :
a) \(\left|3.x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}.y+\dfrac{3}{5}\right|\)= 0
b)\(\left|\dfrac{3}{2}.x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}.y-\dfrac{1}{2}\right|\le0\)
a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)
Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)
b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)
Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)
Các số dương x,y,z thỏa mãn điều kiện : x + y + z = 1. Tìm giá trị nhỏ nhất của biểu thức : F = \(\dfrac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Giúp mình với mình cần gấp
Hướng dẫn: đặt \(A=\dfrac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Khi đó \(F-A=x-y+y-z+z-x=0\Rightarrow F=A\)
\(\Rightarrow2F=F+A=\sum\dfrac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x+y\right)^2\left(x^2+y^2\right)}{4\left(x^2+y^2\right)\left(x+y\right)}\)
\(\Rightarrow2F\ge\dfrac{x+y+z}{2}\Rightarrow F\ge\dfrac{x+y+z}{4}\)
Cho các số thực dương x,y thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=4\). Tìm GTNN của biểu thức \(A=\left(x^2+\dfrac{1}{x^2}+1\right)^4+\left(y^2+\dfrac{1}{y^2}+1\right)^4\).
Ta có \(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(\dfrac{\left(a+b\right)^2}{2}\right)^2}{2}=\dfrac{\left(a+b\right)^4}{8}\). Áp dụng cho biểu thức A, suy ra \(A\ge\dfrac{\left(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\right)^4}{8}\). Ta tìm GTNN của \(P=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\). Ta có
\(P=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2\)
\(P\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}\left(\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2}{2}\right)+2\)
\(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}.\left(\dfrac{4^2}{2}\right)+2\) \(=\dfrac{21}{2}\). Do đó \(P\ge\dfrac{21}{2}\) \(\Leftrightarrow A\ge\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\). Vậy GTNN của A là \(\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\), ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{2}\)