Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thị Hải Vân
Xem chi tiết
nguyễn lam nhật
Xem chi tiết
nguyễn lam nhật
9 tháng 5 2016 lúc 20:43

hhv vbmkj55144466

thánh chó
Xem chi tiết
Zoro
19 tháng 2 2018 lúc 19:46

Ta có :   A = 3^1 + 3^2 + 3^3 + ... + 3^2016 

    Số lượng số của A là : 

                ( 2016 - 1 ) : 1 + 1 = 2016 ( số ) 

   Do \(2016⋮4\)nên ta nhóm 4 số liền nhau thành 1 nhóm như sau : 
        A   =     3^1 + 3^2 + 3^3 + ... = 3^2016

   => A = ( 3^1 + 3^2 + 3^3 + 3^4 ) + ( 3^5 + 3^6 + 3^7 + 3^8 ) + ... + ( 3^2013 + 3^2014 + 3^2015 + 3^2016 ) 
   => A =   3^1 . ( 1 + 3 + 3^2 + 3^3 ) + 3^5 . ( 1 + 3 + 3^2 + 3^3 ) + ...+ 3^2013 . ( 1 + 3 + 3^2 + 3^3  )

   => A  = 3^1 . 40 + 3^5 . 40 + ... + 3^2013 . 40

   => A  =    40 . ( 3^1 + 3^5 + ...+3^2013 ) \(⋮5\)( vì 40 \(⋮5\)) ( ĐPCM ) 

Tham khảo cách của mk nhé !

Hải Yến
19 tháng 2 2018 lúc 19:43

A = 3^1 + 3^2 + 3^3 + ... + 3^2016 

    = ( 3^1 + 3^2 + 3^3 + 3^4 ) + ( 3^5 + 3^6 + 3^7 + 3^8 ) +....+ ( 3^2013 + 3^2014 + 3^2015 + 3^2016 )

    = 120 + 3^5 ( 3^1 + 3^2 + 3^3 + 3^4 ) + ... + 3^2013( 3^1 + 3^2 + 3^3 + 3^4 )

    = 120 + 3^5 . 120 + ... + 3^1 . 120

    = 120 . ( 1 + 3^5 + ... + 3^2013 ) chia hết cho 5

Vậy chia hết cho 5

Gia Hân Ngô
19 tháng 2 2018 lúc 19:43

\(A=3+3^2+3^3+...+3^{2016}\)

\(\Leftrightarrow A=3+3^2+3^3+3^4+...+3^{2013}+3^{2014}+3^{2015}+3^{2016}\)

\(\Leftrightarrow A=3\left(1+3+3^2+3^3\right)+...+3^{2013}\left(1+3+3^2+3^3\right)\)

\(\Leftrightarrow A=3.40+...+3^{2013}.40\)

\(\Leftrightarrow A=40\left(3+....+3^{2013}\right)\)

Mà: \(40⋮5\)

Nên: \(40\left(3+...+3^{2013}\right)⋮5\)

Vậy ................

phong long
Xem chi tiết
Đinh Đức Hùng
27 tháng 11 2016 lúc 21:18

=> A = ( 3 + 32 ) + ( 33 + 34 ) + .... + ( 32015 + 32016 )

= 3 ( 1 + 3 ) + 33 ( 1 + 3 ) + .... + 32015 ( 1 + 3 )

= 3.4 + 33.4 + ... + 32015.4

= 4( 3 + 33 + ... + 32015 ) là bội của 4 ( đpcm )

Dưa Hấu
Xem chi tiết
LazyGirl_1111
14 tháng 3 2022 lúc 13:25

Ta có : \(\dfrac{1}{2^2}\)<\(\dfrac{1}{1.2}\)\(\dfrac{1}{3^2}\)<\(\dfrac{1}{2.3}\);.....;\(\dfrac{1}{2016^2}\)<\(\dfrac{1}{2015.2016}\)

⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\)\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2015.2016}\)

⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\) < 1 - \(\dfrac{1}{2016}\)\(\dfrac{2015}{2016}\) (ĐCPCM)

Dũng Trần Alexander
Xem chi tiết
Nguyễn Khánh Ngoc
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
6 tháng 3 2023 lúc 16:17

\(A=\left(\dfrac{456}{2}+1\right)+...+\left(\dfrac{2}{456}+1\right)+\left(\dfrac{1}{457}+1\right)+1\)

\(A=458+\dfrac{458}{2}+....+\dfrac{458}{456}+\dfrac{458}{457}-\dfrac{458}{458}\)

\(A=458\left(\dfrac{1}{2}+...+\dfrac{1}{456}+\dfrac{1}{457}+\dfrac{1}{458}\right)\)

Ta xét \(\dfrac{1}{2}+....+\dfrac{1}{456}+\dfrac{1}{457}+\dfrac{1}{458}\)có :

\(\dfrac{1}{2}=\dfrac{1}{2}\)

\(\dfrac{1}{3}+\dfrac{1}{4}>\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

\(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{8}>\dfrac{1}{8}+\dfrac{1}{8}+...+\dfrac{1}{8}=\dfrac{1}{2}\)

\(\dfrac{1}{9}+\dfrac{1}{10}+....+\dfrac{1}{16}>\dfrac{1}{16}+....+\dfrac{1}{16}=\dfrac{1}{2}\)

\(\dfrac{1}{17}+\dfrac{1}{18}+....+\dfrac{1}{32}>\dfrac{1}{32}+.....+\dfrac{1}{32}=\dfrac{1}{2}\)

\(\dfrac{1}{33}+\dfrac{1}{34}+....+\dfrac{1}{64}>\dfrac{1}{64}+....+\dfrac{1}{64}=\dfrac{1}{2}\)

\(\dfrac{1}{65}+\dfrac{1}{66}+.....+\dfrac{1}{128}>\dfrac{1}{128}+....+\dfrac{1}{128}=\dfrac{1}{2}\)

\(\dfrac{1}{129}+\dfrac{1}{130}+.....+\dfrac{1}{256}>\dfrac{1}{256}+....+\dfrac{1}{256}=\dfrac{1}{2}\)

\(\dfrac{1}{257}+\dfrac{1}{258}+....+\dfrac{1}{458}>\dfrac{1}{458}+...+\dfrac{1}{458}=\dfrac{1}{2}\)

Vậy ta thấy được rằng

\(\dfrac{1}{2}+...+\dfrac{1}{456}>\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{202}{458}\)

\(=4+\dfrac{202}{458}=\dfrac{2034}{458}\)

Vậy \(A>458.\dfrac{2034}{458}=2034\)

Hay tức là A > 2016 ( đpcm )

 

 

 

Sarah Trần
Xem chi tiết
Sarah Trần
3 tháng 5 2018 lúc 20:48

mấy bạn ơi câu b) là chứng minh C<\(\dfrac{1}{2}\)nha

Hung Nguyen
Xem chi tiết
soyeon_Tiểubàng giải
19 tháng 10 2016 lúc 23:17

Chứng minh rổng quát, Nếu:

\(A=\frac{1}{a^{2.k}}-\frac{1}{a^{2.\left(k+1\right)}}+\frac{1}{a^{2.\left(k+2\right)}}-\frac{1}{a^{2.\left(k+3\right)}}+...+\frac{1}{a^{2.\left(k+n\right)}}-\frac{1}{a^{2.\left(k+n+1\right)}}\) (a;b \(\in\) N*)

\(a^{2.k}.A=1-\frac{1}{a^{2.k}}+\frac{1}{a^{2.\left(k+1\right)}}-\frac{1}{a^{2.\left(k+2\right)}}+...+\frac{1}{a^{2.\left(k+n-1\right)}}-\frac{1}{a^{2.\left(k+n\right)}}\)

\(a^{2.k}.A+A=\left(1-\frac{1}{a^{2.k}}+\frac{1}{a^{2.\left(k+1\right)}}-\frac{1}{a^{2.\left(k+2\right)}}+..+\frac{1}{a^{2.\left(k+n-1\right)}}-\frac{1}{a^{2.\left(k+n\right)}}\right)-\left(\frac{1}{a^{2.k}}-\frac{1}{a^{2.\left(k+1\right)}}+\frac{1}{a^{2.\left(k+2\right)}}-\frac{1}{a^{2.\left(k+3\right)}}+..+\frac{1}{a^{2.\left(k+n\right)}}-\frac{1}{a^{2.\left(k+n+1\right)}}\right)\)

\(A.\left(a^{2.k}+1\right)=1-\frac{1}{a^{2.\left(k+n+1\right)}}< 1\)

\(A< \frac{1}{a^{2.k}+1}\)

Áp dụng vào bài toán dễ thấy a = 3; k = 1

Như vậy, \(A< \frac{1}{3^{2.1}+1}=\frac{1}{3^2+1}=\frac{1}{9+1}=\frac{1}{10}=0,1\left(đpcm\right)\)