Cho A=1/3+1/3^2+1/3^3+...+1/3^2016. Chứng minh A<1/2
Cho A=1/3+1/3^2+1/3^3+...+1/3^2016. Chứng minh A<1/2
Cho A=3^1+3^2+3^3+...+3^2016.chứng minh A chia hết 5
Ta có : A = 3^1 + 3^2 + 3^3 + ... + 3^2016
Số lượng số của A là :
( 2016 - 1 ) : 1 + 1 = 2016 ( số )
Do \(2016⋮4\)nên ta nhóm 4 số liền nhau thành 1 nhóm như sau :
A = 3^1 + 3^2 + 3^3 + ... = 3^2016
=> A = ( 3^1 + 3^2 + 3^3 + 3^4 ) + ( 3^5 + 3^6 + 3^7 + 3^8 ) + ... + ( 3^2013 + 3^2014 + 3^2015 + 3^2016 )
=> A = 3^1 . ( 1 + 3 + 3^2 + 3^3 ) + 3^5 . ( 1 + 3 + 3^2 + 3^3 ) + ...+ 3^2013 . ( 1 + 3 + 3^2 + 3^3 )
=> A = 3^1 . 40 + 3^5 . 40 + ... + 3^2013 . 40
=> A = 40 . ( 3^1 + 3^5 + ...+3^2013 ) \(⋮5\)( vì 40 \(⋮5\)) ( ĐPCM )
Tham khảo cách của mk nhé !
A = 3^1 + 3^2 + 3^3 + ... + 3^2016
= ( 3^1 + 3^2 + 3^3 + 3^4 ) + ( 3^5 + 3^6 + 3^7 + 3^8 ) +....+ ( 3^2013 + 3^2014 + 3^2015 + 3^2016 )
= 120 + 3^5 ( 3^1 + 3^2 + 3^3 + 3^4 ) + ... + 3^2013( 3^1 + 3^2 + 3^3 + 3^4 )
= 120 + 3^5 . 120 + ... + 3^1 . 120
= 120 . ( 1 + 3^5 + ... + 3^2013 ) chia hết cho 5
Vậy chia hết cho 5
\(A=3+3^2+3^3+...+3^{2016}\)
\(\Leftrightarrow A=3+3^2+3^3+3^4+...+3^{2013}+3^{2014}+3^{2015}+3^{2016}\)
\(\Leftrightarrow A=3\left(1+3+3^2+3^3\right)+...+3^{2013}\left(1+3+3^2+3^3\right)\)
\(\Leftrightarrow A=3.40+...+3^{2013}.40\)
\(\Leftrightarrow A=40\left(3+....+3^{2013}\right)\)
Mà: \(40⋮5\)
Nên: \(40\left(3+...+3^{2013}\right)⋮5\)
Vậy ................
cho A = 3^1+3^2 +...+3^2016. chứng minh A là bội của 4
=> A = ( 3 + 32 ) + ( 33 + 34 ) + .... + ( 32015 + 32016 )
= 3 ( 1 + 3 ) + 33 ( 1 + 3 ) + .... + 32015 ( 1 + 3 )
= 3.4 + 33.4 + ... + 32015.4
= 4( 3 + 33 + ... + 32015 ) là bội của 4 ( đpcm )
cho A = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/ 2015^2 + 1/2016^2. Chứng minh rằng: A < 2015/2016
Ta có : \(\dfrac{1}{2^2}\)<\(\dfrac{1}{1.2}\); \(\dfrac{1}{3^2}\)<\(\dfrac{1}{2.3}\);.....;\(\dfrac{1}{2016^2}\)<\(\dfrac{1}{2015.2016}\)
⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\)< \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2015.2016}\)
⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\) < 1 - \(\dfrac{1}{2016}\)= \(\dfrac{2015}{2016}\) (ĐCPCM)
Cho A = 1\3 + 1\32 + 1\33 + 1\34 + ............................+ 1\32015 + 1\32016
Chứng minh A < 1\2 .
Cho A=457/1+456/2+455/3+…+1/457, Chứng minh: A>2016
\(A=\left(\dfrac{456}{2}+1\right)+...+\left(\dfrac{2}{456}+1\right)+\left(\dfrac{1}{457}+1\right)+1\)
\(A=458+\dfrac{458}{2}+....+\dfrac{458}{456}+\dfrac{458}{457}-\dfrac{458}{458}\)
\(A=458\left(\dfrac{1}{2}+...+\dfrac{1}{456}+\dfrac{1}{457}+\dfrac{1}{458}\right)\)
Ta xét \(\dfrac{1}{2}+....+\dfrac{1}{456}+\dfrac{1}{457}+\dfrac{1}{458}\)có :
\(\dfrac{1}{2}=\dfrac{1}{2}\)
\(\dfrac{1}{3}+\dfrac{1}{4}>\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)
\(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{8}>\dfrac{1}{8}+\dfrac{1}{8}+...+\dfrac{1}{8}=\dfrac{1}{2}\)
\(\dfrac{1}{9}+\dfrac{1}{10}+....+\dfrac{1}{16}>\dfrac{1}{16}+....+\dfrac{1}{16}=\dfrac{1}{2}\)
\(\dfrac{1}{17}+\dfrac{1}{18}+....+\dfrac{1}{32}>\dfrac{1}{32}+.....+\dfrac{1}{32}=\dfrac{1}{2}\)
\(\dfrac{1}{33}+\dfrac{1}{34}+....+\dfrac{1}{64}>\dfrac{1}{64}+....+\dfrac{1}{64}=\dfrac{1}{2}\)
\(\dfrac{1}{65}+\dfrac{1}{66}+.....+\dfrac{1}{128}>\dfrac{1}{128}+....+\dfrac{1}{128}=\dfrac{1}{2}\)
\(\dfrac{1}{129}+\dfrac{1}{130}+.....+\dfrac{1}{256}>\dfrac{1}{256}+....+\dfrac{1}{256}=\dfrac{1}{2}\)
\(\dfrac{1}{257}+\dfrac{1}{258}+....+\dfrac{1}{458}>\dfrac{1}{458}+...+\dfrac{1}{458}=\dfrac{1}{2}\)
Vậy ta thấy được rằng
\(\dfrac{1}{2}+...+\dfrac{1}{456}>\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{202}{458}\)
\(=4+\dfrac{202}{458}=\dfrac{2034}{458}\)
Vậy \(A>458.\dfrac{2034}{458}=2034\)
Hay tức là A > 2016 ( đpcm )
a)Cho A= \(\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}+\dfrac{2021}{2015}\)
Chứng minh A>6
b)Cho C=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+....+\dfrac{1}{3^{2010}}\)
Chứng minh rằng C<1
Cho D=\(\dfrac{1}{1^2.2^3}+\dfrac{5}{2^2.3^3}+\dfrac{7}{3^2.4^2}+.....+\dfrac{4019}{2009^2.2010^2}\)
Chứng minh rằng D<1
mấy bạn giúp mình nha. Mình cần gấp lắm TT^TT
mấy bạn ơi câu b) là chứng minh C<\(\dfrac{1}{2}\)nha
cho A=\(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{2014}}-\frac{1}{3^{2016}}\) chứng minh rằng A<0,1 hãy tổng quát bài toán
Chứng minh rổng quát, Nếu:
\(A=\frac{1}{a^{2.k}}-\frac{1}{a^{2.\left(k+1\right)}}+\frac{1}{a^{2.\left(k+2\right)}}-\frac{1}{a^{2.\left(k+3\right)}}+...+\frac{1}{a^{2.\left(k+n\right)}}-\frac{1}{a^{2.\left(k+n+1\right)}}\) (a;b \(\in\) N*)
\(a^{2.k}.A=1-\frac{1}{a^{2.k}}+\frac{1}{a^{2.\left(k+1\right)}}-\frac{1}{a^{2.\left(k+2\right)}}+...+\frac{1}{a^{2.\left(k+n-1\right)}}-\frac{1}{a^{2.\left(k+n\right)}}\)
\(a^{2.k}.A+A=\left(1-\frac{1}{a^{2.k}}+\frac{1}{a^{2.\left(k+1\right)}}-\frac{1}{a^{2.\left(k+2\right)}}+..+\frac{1}{a^{2.\left(k+n-1\right)}}-\frac{1}{a^{2.\left(k+n\right)}}\right)-\left(\frac{1}{a^{2.k}}-\frac{1}{a^{2.\left(k+1\right)}}+\frac{1}{a^{2.\left(k+2\right)}}-\frac{1}{a^{2.\left(k+3\right)}}+..+\frac{1}{a^{2.\left(k+n\right)}}-\frac{1}{a^{2.\left(k+n+1\right)}}\right)\)
\(A.\left(a^{2.k}+1\right)=1-\frac{1}{a^{2.\left(k+n+1\right)}}< 1\)
\(A< \frac{1}{a^{2.k}+1}\)
Áp dụng vào bài toán dễ thấy a = 3; k = 1
Như vậy, \(A< \frac{1}{3^{2.1}+1}=\frac{1}{3^2+1}=\frac{1}{9+1}=\frac{1}{10}=0,1\left(đpcm\right)\)