Chứng minh rằng: \(C=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{7}{12}\)
Cho biểu thức A= \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....................+\frac{1}{200}\). Chứng minh rằng \(A>\frac{7}{12}\)
Số số hạng của A là:
(200-101):1+1=100(số)
Nếu ta nhóm A thành các nhóm,mỗi nhóm 50 số hạng ta được :
100:50=2(nhóm)
Ta có :
A=(1/101+1/102+...+1/150)+(1/151+1/152+1/153+...+1/200)
Vì 1/101<1/102<1/103<...<1/150 nên 1/101+1/102+...+1/150<1/150x50
1/151<1/152<1/153<...<1/200 nên 1/151+1/152+1/153+...+1/200<1/200x50
Từ 3 điều trên suy ra:
A<1/150x50+1/200x50
A<1/3+1/4
A<7/12
vậy A<7/12
❤~~~ HỌC TỐT~~~❤Đặng Khánh Duy
Chứng minh:
A= \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{199}+\frac{1}{200}>\frac{7}{12}\)\(A>\left(\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}\right)+\left(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\right)\) (mỗi ngoặc có 50 số hạng)
\(;A>\left(\frac{1}{150}.50\right)+\left(\frac{1}{200}.50\right)=50.\left(\frac{1}{150}+\frac{1}{200}\right)=50.\frac{7}{600}=\frac{7}{12}\)
Chứng minh:
A = \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{199}+\frac{1}{200}>\frac{7}{12}\)
ta có
1/101 > 1/150
1/102> 1/150
...>1/150
1/150 = 1/150
=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3
ta có
1/151 >1/200
1/152 > 1/200
..>1/200
1/200 = 1/200
=> 1/151 + 1/152+....+1/200 > 1/200+1/200+ ...+1/200( 50 số hạng) = 1/4
==> 1/101 + 1/102+....+1/200 > 1/3 +1/4
==> A > 7/12
Chứng minh rằng: \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{200}< \frac{3}{4}\)
Chứng minh:
A=\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+......+\frac{1}{109}+\frac{1}{200}>\frac{7}{12}\)
CÁC BẠN ƠI GIÚP MIK VỚI MAI MIK PHẢI NỘP RỒI
Số số hạng của A là:
(200-101):1+1=100(số)
Nếu ta nhóm A thành các nhóm,mỗi nhóm 50 số hạng ta được :
100:50=2(nhóm)
Ta có :
A=(1/101+1/102+...+1/150)+(1/151+1/152+1/153+...+1/200)
Vì 1/101<1/102<1/103<...<1/150 nên 1/101+1/102+...+1/150<1/150x50
1/151<1/152<1/153<...<1/200 nên 1/151+1/152+1/153+...+1/200<1/200x50
Từ 3 điều trên suy ra:
A<1/150x50+1/200x50
A<1/3+1/4
A<7/12
vậy A<7/12
Nhớ like cho mik nhé
Chứng minh rằng:
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Help me!!!!!!!
Bạn tham khảo tại Câu hỏi của lê chí dũng - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
Chúc bạn học tốt!
C/m:\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{200}>\frac{7}{12}\)
a) S hình thoi là:
(19 x 12) : 2 = 114(cm2)
b) S hình thoi là;
(30 x 7) : 2 = 105(cm2)
Đặt A = 1/101 + 1/102 + 1/103 + ... + 1/200
A = ( 1/101 + 1/102 + ... + 1/150) + ( 1/151 + 1/152 + ... + 1/200)
A > ( 1/150 + 1/150 + ... + 1/150) + ( 1/200 + 1/200 + ... + 1/200)
( 50 phân số) ( 50 phân số)
A > 50 x 1/150 + 50 x 1/200
A > 1/3 + 1/4 = 7/12
Cho biểu thức: A= \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103} +...+\frac{1}{200}\) . Chứng minh rằng A> \(\frac{7}{12}\)
Các bạn giải giúp mình nhé, xin cảm ơn mọi người!
đặt B=\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}+\frac{1}{150}+...+\frac{1}{150}>\frac{50}{150}=\frac{1}{3}\)
đặt C=\(\frac{1}{151}+\frac{1}{152}+\frac{1}{153}+...+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}>\frac{50}{200}=\frac{1}{4}\)
A=B+C>\(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Câu hỏi :Chứng minh
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Biến đổi vế phải của đẳng thức :
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{100}\)
\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}-2\left[\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right]\)
\(=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{200}\)