Bạn tham khảo tại Câu hỏi của lê chí dũng - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
Chúc bạn học tốt!
Bạn tham khảo tại Câu hỏi của lê chí dũng - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
Chúc bạn học tốt!
Chứng minh:
A= \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{199}+\frac{1}{200}>\frac{7}{12}\)$\frac{1}{101}$$+$$\frac{1}{102}$$+$$\frac{1}{103}$$+$ $.............$ $+$$\frac{1}{200}$
Chứng minh:
A=\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+......+\frac{1}{109}+\frac{1}{200}>\frac{7}{12}\)
CÁC BẠN ƠI GIÚP MIK VỚI MAI MIK PHẢI NỘP RỒI
Cho A = \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
\(a,\) Chứng minh rằng \(A>\frac{7}{12}\)
b) Chứng minh : \(A>\frac{5}{8}\)
So sanh
\(\frac{1}{101}\)\(+\frac{1}{102}\)\(+...+\frac{1}{199}\)\(+\frac{1}{200}\) voi \(\frac{7}{12}\)
CMR: \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{5}{8}\)
$A$$=$$\frac{1}{101}$$+$$\frac{1}{102}$$+$$\frac{1}{103}$$+$ $.............$ $+$$\frac{1}{200}$
$CMR$: $a$, $A$$>$$\frac{7}{12}$
$b$, $A$$>$$\frac{5}{8}$
chứng minh rằng : \(\frac{1}{3^2}\) +\(\frac{1}{4^2}\) + .....+\(\frac{1}{200^2}\) < \(\frac{4}{9}\)
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\)