Chung minh rang ba don thuc khong cung gia tri am
Cho ba don thuc:\(M=-5xy\),\(N=11xy^2\),\(P=\frac{7}{5}x^2y^3\).Chung minh rang ba don thuc nay khong the cung co gia tri duong.
chung minh rang bieu thuc 4x(x+y)(x+y+z)(x+y) y^2x^2 luon luon khong am voi moi gia tri cua x,y va z
Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4\left(x+y\right)\left(x+z\right)x\left(x+y+z\right)+y^2z^2=4\left(x^2+xz+xy+yz\right)\left(x^2+xy+xz\right)+y^2z^2\)
Đặt x2+xy+xz=t, ta có:
\(A=4\left(t+yz\right)t+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\)
chung minh rang bieu thuc 4x(x+y)(x+y+z)(x+y) y^2x^2 luon luon khong am voi moi gia tri cua x,y va z
ta có : \(4x\left(x+y\right)\left(x+y+z\right)\left(x+y\right)y^2x^2=4x\left(x+y+z\right)\left(x+y\right)^2y^2x^2\)
không thể khẳng định đc \(\Rightarrow\) bn xem lại đề .
chung minh rang bieu thuc sau luon luon co gia tri am voi moi gia tri cua bien: -5-(x-1)(x+2)
cmr bieu thuc sau luon luon co gia tri duong voi moi gia tri cua bien: 3x^2 -5x+3
chung minh rang gia tri cua bieu thuc sau khong p:hu thuoc vao gia tri cua bien: (3x2- 3x+7)- (4x2- 5x + 3)+ (x2 -2x)
\(A=3x^2-3x+7-4x^2+5x-3+x^2-2x\)
\(=\left(3x^2+x^2-4x^2\right)+\left(-3x+5x-2x\right)+4\)
=4
Cho 3 don thuc \(\frac{5}{3}x^2y^5z^3;\frac{-2}{5}x^3yzt^2;\frac{3}{7}x^{15}y^4z^2\)
Trong do cac bien x, y, z, t khac 0
Chung minh rang trong 3 don thuc da cho co it nhat 1 don thuc gia tri am.
chung minh rang cac bieu thuc sau khong phu thuoc vao gia tri cua bien x, biet B= x (x^3 + 2x^2 - 3x +2) - (x^2+ 2x) x^2 +3x ( x-1) +x-12
B=x^4+2x^3-3x^2+2x-x^4-2x^3+3x^2-3x+x-12
=-12
\(B=x\left(x^3+2x^2-3x+2\right)-\left(x^2+2x\right)x^2+3x\left(x-1\right)+x-12\)
\(=x^4+2x^3-3x^2+2x-x^4-2x^3+3x^2-3x+x-12\)
\(=\left(x^4-x^4\right)+\left(2x^3-2x^3\right)+\left(-3x^2+3x^2\right)+\left(2x-3x+x\right)-12\)
\(=0+0+0+0-12\)
\(=-12\)
cho cac da thuc a=-1/2x^2yz^2 b=-3/4xy^2z^2 c=x^3y cmr cac da thuc a b c khong cung nhan gia tri am
cho bieu thuc 4x. Hay ly luan de chung to bieu thuc do khong co gia tri lon nhat khong co gia tri nho nhat