Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nghĩa
Xem chi tiết
Kiệt Nguyễn
24 tháng 11 2019 lúc 10:42

a,b,c là độ dài 3 cạnh của 1 tam giác nên:

\(\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2< ab+ac\\b^2< bc+ab\\c^2< ac+bc\end{cases}}\)

Cộng từng vế của các BĐT trên:

\(a^2+b^2+c^2< 2\left(ab+bc+ac\right)\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)\)\(< 4\left(ab+bc+ac\right)\)

\(\Rightarrow\left(a+b+c\right)^2\)\(< 4\left(ab+bc+ac\right)\)(đpcm)

Khách vãng lai đã xóa
Hai Anh Vũ
Xem chi tiết
Vũ Đức Anh
Xem chi tiết
Nguyễn Đức Gia Minh
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Hồng Phúc
17 tháng 1 2021 lúc 9:26

Bất đẳng thức mà sao dấu =.

Thái Bùi Ngọc
Xem chi tiết
Quỳnh Anh
Xem chi tiết
tthnew
17 tháng 1 2021 lúc 18:35

Bất đẳng thức ngược dấu rồi.

BĐT \(\Leftrightarrow\left(a+b+c\right)\prod\left(a+b-c\right)\le a^4+b^4+c^4\)

Đặt $\left\{ \begin{array}{l}a + b + c = 2s\\ab + bc + ca = {s^2} + 4Rr + {r^2}\\abc = 4sRr\end{array} \right.$

Bất đẳng thức cần chứng minh quy về:

\(16\,r{s}^{2} \left( R-2\,r \right) +2\,{s}^{2} \left( 5\,{r}^{ 2}+{s}^{2} -16\,Rr\right) +2\,{r}^{2} \left( 16\,{R}^{2}+8\,Rr+{r}^{2}-3\,{s} ^{2} \right) \geqslant 0\)

Đây là điều hiển nhiên.

Trần Tuấn Minh
Xem chi tiết
Lê Song Phương
25 tháng 6 2023 lúc 8:45

a) Thay \(b=a-1\) vào hệ thức thứ hai thì được \(a-1+c=a+4\) hay \(c=5\). Hơn nữa, ta thấy \(a>b\) nên \(b\) không thể là độ dài của cạnh huyền của tam giác vuông được. Sẽ có 2 trường hợp:

 TH1: \(a\) là độ dài cạnh huyền. Khi đó theo định lí Pythagoras thì \(b^2+c^2=a^2\) \(\Rightarrow b^2+25=\left(b+1\right)^2\) \(\Leftrightarrow b^2+25=b^2+2b+1\) \(\Leftrightarrow2b=24\) \(\Leftrightarrow b=12\), suy ra \(a=13\). Vậy \(\left(a,b,c\right)=\left(13,12,5\right)\)

 TH2: \(c\) là độ dài cạnh huyền. Khi đó cũng theo định lý Pythagoras thì \(a^2+b^2=c^2\) \(\Leftrightarrow\left(b+1\right)^2+b^2=25\) \(\Leftrightarrow2b^2+2b-24=0\) \(\Leftrightarrow b^2+b-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}b=3\left(nhận\right)\\b=-4\left(loại\right)\end{matrix}\right.\) \(\Rightarrow a=b+1=4\). Vậy \(\left(a,b,c\right)=\left(4,3,5\right)\)

  Như vậy, ta tìm được \(\left(a,b,c\right)\in\left\{\left(13,12,5\right);\left(4,3,5\right)\right\}\)

b) Bạn không nói rõ b', c' là gì thì mình không tính được đâu. Mình tính b, c trước nhé.

 Do \(b:c=3:4\) nên rõ ràng \(c>b\). Vì vậy \(b\) không thể là độ dài cạnh huyền được. Sẽ có 2TH

 TH1: \(c\) là độ dài cạnh huyền. Khi đó theo định lý Pythagoras thì \(a^2+b^2=c^2\). Do \(b:c=3:4\) nên \(b=\dfrac{3}{4}c\). Đồng thời \(a=125\) \(\Rightarrow125^2+\left(\dfrac{3}{4}c\right)^2=c^2\) \(\Rightarrow\dfrac{7}{16}c^2=125^2\) \(\Leftrightarrow c=\dfrac{500}{\sqrt{7}}\) \(\Rightarrow b=\dfrac{375}{\sqrt{7}}\). Vậy \(\left(b,c\right)=\left(\dfrac{375}{\sqrt{7}},\dfrac{500}{\sqrt{7}}\right)\)

 TH2: \(a\) là độ dài cạnh huyền. Khi đó cũng theo định lý Pythagoras, ta có \(b^2+c^2=a^2=125^2\). Lại có \(b:c=3:4\Rightarrow\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{b^2+c^2}{25}=\dfrac{125^2}{25}=625\)

\(\Rightarrow b^2=5625\Rightarrow b=75\) \(\Rightarrow c=100\). Vậy \(\left(b,c\right)=\left(75,100\right)\)

Như vậy, ta tìm được \(\left(b,c\right)\in\left\{\left(75,100\right);\left(\dfrac{350}{\sqrt{7}};\dfrac{500}{\sqrt{7}}\right)\right\}\)

 

 

le thi khanh huyen
Xem chi tiết
tth
10 tháng 10 2017 lúc 20:38

Gán giá trị: a = b = c = d = 1

Ta có, giá trị phải thỏa mãn điều kiện \(a^4+b^4+c^4+d^4=4abcd\Leftrightarrow1^4+1^4+1^4+1^4=1+1+1+1\)

\(=4\) (thỏa mãn yêu cầu đề bài)

\(\RightarrowĐPCM\)

Ps: Làm xàm chút thôi! nhưng vẫn có thể đúng!

hoang quoc quan
12 tháng 4 2020 lúc 12:03

áp dụng bất đẳng thức a2+b2\(\ge\)2ab, dấu bằng xảy ra khi a=b

Ta có a4+b4\(\ge\)2a2b2,dấu bằng xảy ra khi a=b

c4+d4\(\ge\)2c2d2,dấu bằng xảy ra khi c=d

a2b2+c2d2\(\ge\)2abcd,dấu bằng xảy ra khi ab=cd

Vậy a4+b4+c4+d4\(\ge\)2a2b2+2c2d2=2(a2b2+c2d2)\(\ge\)2.2abcd=4abcd

Dấu = xảy ra khi \(\hept{\begin{cases}a=b\\c=d\\ab=cd\end{cases}}\)suy ra a=b=c=d suy ra a,b,c,d là 4 cạnh của 1 hình thoi

 
Khách vãng lai đã xóa
Trần Vũ Hoàng Oanh
12 tháng 4 2020 lúc 12:14

giải:

giả sử a, b, ,c, d lần lượt là các cạnh của 1 hình thoi

=>a = b = c = d

theo đề bài, ta có:

a^4 + b^4 + c^4 + d^4 = 4abcd

hay a^4 + a^4 + a^4 + a^4 = 4aaaa

<=> 4a^4 = 4a^4 (ĐPCM)

Khách vãng lai đã xóa