So sánh M= 1/ 1.2 + 1/ 2. 3 + ..........+ 1/ 49. 50 với 1
so sánh
M= 1 phần 1.2 + 1 phần 2.3 + ...+ 1 phần 49 phần 50 với 1
\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(M=\frac{1}{1}+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{49}-\frac{1}{49}\right)-\frac{1}{50}\)
\(M=\frac{1}{1}-\frac{1}{50}\)
\(M=\frac{49}{50}\)
Vậy M < 1
so sánh A=1/2^1+1/2^2+1/2^3+1/2^4+...+1/2^49+1/2^50 với 1
2A = 1 + 1/2 + 1/22 + 1/23 + ... + 1/248+ 1/249
2A - A = (1 + 1/2 + 1/22 + 1/23 + ... + 1/248 + 1/249) - (1/2 + 1/22 + 1/23 + 1/24 + ... + 1/249 + 1/250)
A = 1 - 1/250
1/1*1+1/2*3+1/3*5+1/4*7+...+1/49*97+1/50*99. Hãy so sánh với 7/6
So sánh
A=1/21+1/22+1/23+...+1/249+1/250 với 1
\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)
\(2A=2\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)
\(2A=1+\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}\)
\(2A-A=A\)
\(=1+\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)
\(=1+\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}-\frac{1}{2^1}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{49}}-\frac{1}{2^{50}}\)
\(=1-\frac{1}{2^{50}}< 1\)
\(\Rightarrow A< 1\)
\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)
\(2A=\text{}\text{}1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)
\(A=1-\frac{1}{2^{50}}\)
Vậy \(A\)< 1
1-1/2^50 sao lại bé hơn 1 vậy :V?
So sánh a và b A = 5 mũ 49 + 1 / 5 mũ 50 + 1
B = 5 mũ 99 + 1 / 5 mũ 50 + 1
A= 3 mũ 49 - 5 / 3 mũ 48 - 5 / 3 mũ 50 - 5 / 3 mũ 49 - 5
so sánh \(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{2}{2^{49}}+\frac{2}{2^{50}}\)với 1
2A=1+1/2+................+1/2^49+1/2^50
A=1+1/2^50=> A>1
Tính tổng
A=1/1.2+1/2.3+.......+1/49/50
B=2/3.5+2/5.7+..........+2/37.39
C=3/4.7+3/7.10+.........+3/37.39
Ai giúp mình với!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{50}=\dfrac{49}{50}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{50}=\dfrac{50}{50}-\dfrac{1}{50}=\dfrac{49}{50}\)
A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
= \(\left(1-\dfrac{1}{2}\right)\)+\(\left(\dfrac{1}{2}-\dfrac{1}{3}\right)\)+...+\(\left(\dfrac{1}{49}-\dfrac{1}{50}\right)\)
= \(\left(1-\dfrac{1}{50}\right)\) = \(\dfrac{49}{50}\)
So sánh:
M= 2 phần 1×2 + 2 phần 2×3 + .............+ 2 phần 49×50 với 2.
Ai giải dùm mình với ạ ai giải đúng mình tick cho ạ.
#)Thắc mắc ?
Cho mk hỏi cái ''với 2'' là j bn ? so sánh ak, nếu là so sánh thì mk giải thế này :
#)Giải :
\(M=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{49.50}\)
\(M=2-1+1-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+...+\frac{2}{48}-\frac{2}{49}+\frac{2}{49}-\frac{2}{50}\)
\(M=2-\frac{2}{50}\)
\(M=1\frac{24}{25}=\frac{49}{25}\)
So sánh \(\frac{49}{25}\)với 2
\(2=\frac{2}{1}=\frac{50}{25}\)
Vì \(\frac{49}{25}< \frac{50}{25}\Rightarrow\frac{49}{25}< 2\Rightarrow M< 2\)
#~Will~be~Pens~#
\(M=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{49.50}=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)=2\left(1-\frac{1}{50}\right)=2x\frac{49}{50}=\frac{49}{25}=1\frac{24}{25}\)
Vì M=1 24/25
=>M<2
Giúp mình với:
So sánh A và B biết:
\(A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
Cảm ơn các bạn :)
ta có : \(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(B=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+....+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{50}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{25}\right)\)
\(B=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)
\(\Rightarrow\)\(B=A\)