\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{50}=\dfrac{49}{50}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{50}=\dfrac{50}{50}-\dfrac{1}{50}=\dfrac{49}{50}\)
A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
= \(\left(1-\dfrac{1}{2}\right)\)+\(\left(\dfrac{1}{2}-\dfrac{1}{3}\right)\)+...+\(\left(\dfrac{1}{49}-\dfrac{1}{50}\right)\)
= \(\left(1-\dfrac{1}{50}\right)\) = \(\dfrac{49}{50}\)
\(B=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{37.39}=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\)
\(B=\dfrac{1}{3}-\dfrac{1}{39}=\dfrac{12}{39}-\dfrac{1}{39}=\dfrac{11}{39}\)
\(B=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{37.39}\)
\(B=\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{37.39}\right)\)
\(B=\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\right)\)
\(B=\left(\dfrac{1}{3}-\dfrac{1}{39}\right)=\dfrac{4}{13}\)
\(C=\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{37.39}\)
\(C=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{37}-\dfrac{1}{39}\)
\(C=\dfrac{1}{4}-\dfrac{1}{39}=\dfrac{35}{156}\)
\(C=\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{36.39}=\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{36}-\dfrac{1}{39}\)
\(C=\dfrac{1}{4}-\dfrac{1}{36}=\dfrac{9}{36}-\dfrac{1}{36}=\dfrac{8}{36}=\dfrac{4}{18}\)
A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{49.50}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+......+\dfrac{1}{49}-\dfrac{1}{50}\)
= 1 - \(\dfrac{1}{50}\) = \(\dfrac{49}{50}\)
Vậy A = \(\dfrac{49}{50}\)
B = \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+.....+\dfrac{2}{37.39}\)
= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+....+\dfrac{1}{37}-\dfrac{1}{39}\)
= \(\dfrac{1}{3}-\dfrac{1}{39}\) = \(\dfrac{13}{39}-\dfrac{1}{39}=\dfrac{38}{39}\)
Vậy B = \(\dfrac{38}{39}\)
C = \(\dfrac{3}{4.7}+\dfrac{3}{7.10}+.....+\dfrac{3}{37.39}\)
= \(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+.....+\dfrac{1}{37}-\dfrac{1}{39}\)
= \(\dfrac{1}{4}-\dfrac{1}{39}\) = \(\dfrac{35}{156}\)
Vậy C = \(\dfrac{35}{156}\)