Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
damlenhat minh
Xem chi tiết
Lục Anh Thư
10 tháng 8 2017 lúc 20:01

Xét tam giác ABCABC có phân giác AN=BPAN=BP. Kẻ MN∥AB,PQ∥ABMN∥AB,PQ∥AB. Ta sẽ chứng minh PQ≡MNPQ≡MN
Thật vậy, dễ dàng chứng minh AM=MN,PQ=QBAM=MN,PQ=QB
Xét 2 tam giác cân AMNAMN và PQBPQB có cạnh đáy bằng nhau mà MN>PQMN>PQ (ko mất tính tq, giả sử MNMN gần ABAB hơn PQPQ)
⇒∠PQB>∠NMA⇒∠PQB>∠NMA
⇒∠MAB<∠NBA⇒∠MAB<∠NBA
⇒AM<BN⇒AM<BN
Mà ta lại có AM=MN>PQ=QB>BNAM=MN>PQ=QB>BN (vô lý)
⇒MN≡PQ⇒MN≡PQ

còn lai tu lam nhé!

trị Lương văn
Xem chi tiết
Đỗ thị như quỳnh
8 tháng 5 2017 lúc 11:12

Xét tam giác DCB và tam giác EBC có :

BC là cạnh chung

Góc CDB = góc CEB = 90 độ

BD = CE

\(\Rightarrow\) tam giác DCB = tam giác ECB (cạnh huyền góc nhọn)

\(\Rightarrow\) Góc DCB = góc EBC hay góc ACB = góc ABC

\(\Rightarrow\) Tam giác ABC cân

Nguyen Thi Kim THoa
Xem chi tiết
Lê Minh Anh
9 tháng 8 2016 lúc 17:18

A B C D E O

Do O thuộc trung tuyến CD của tam giác ABC nên OC = 2/3 CD và OD = 1/3 CD

Do O thuộc trung tuyến BE của tam giác ABC nên OB = 2/3 BE và OE = 1/3 BE

Do CD = BE(theo đề ra) => 2/3 CD = 2/3 BE và 1/3 CD = 1/3 BE<=> OC = OB và OD = OE 

Từ OC = OB => Tam giác BOC cân tại O => Góc OBC = Góc OCB     (1)

Xét tam giác DOB và tam giác EOC có:  OC = OB (chứng minh trên); Góc DOB = Góc EOC(đối đỉnh) ;  OD = OE (chứng minh trên)

=> Tam giác DOB = Tam giác EOC(c.g.c) => Góc OBD = Góc OCE(2 góc tương ứng)         (2)

Cộng từng vế của (1) và (2) ta được : Góc OBC + Góc OBD = Góc OCB + Góc OCE =>Góc DBC = Góc ECB

Mà A;D;B thẳng hàng và A;E;C thẳng hàng =>Góc ABC = Góc ACB =>Tam giác ABC cân tại A

Vậy nếu 1 tam giác có 2 đường trung tuyến bằng nhau thì tam giác đó là tam giác cân.

Bùi Thu Nguyệt
Xem chi tiết
Đăng Đặng Hồng
Xem chi tiết
kẻ giấu tên
Xem chi tiết
La Hoàng Lê
Xem chi tiết
lê thị hương giang
8 tháng 5 2017 lúc 15:03

M N P H

a,C/m \(\Delta\) MNH la tam giác cân

Xét \(\Delta MNP\) :

MH là đường cao đồng thời là đường trung trực

=> \(\Delta MNP\) cân tại M

b, C/m MH là tia phân giác

\(\Delta MNP\) cân tại M => MH là đường trung trực đồng thơi là đường phân giác hay MH là tia phân giác của \(\widehat{NMP}\)
Nguyen minh ngoc
8 tháng 5 2017 lúc 15:17

Hỏi đáp Toán

nguyen phuong trang
Xem chi tiết
Vũ Minh Tuấn
4 tháng 11 2019 lúc 21:19

Ta có \(\widehat{xAB}\) là góc ngoài tại đỉnh A của \(\Delta ABC.\)

\(\Rightarrow\widehat{xAB}=\widehat{ABC}+\widehat{ACB}\) (tính chất góc ngoài tam giác).

\(\Rightarrow\widehat{xAB}=110^0+30^0\)

\(\Rightarrow\widehat{xAB}=140^0.\)

\(AK\) là tia phân giác của \(\widehat{BAx}\left(gt\right)\)

\(\Rightarrow\widehat{xAK}=\widehat{KAB}=\frac{\widehat{BAx}}{2}=\frac{140^0}{2}=70^0\) (1)

Lại có: \(\widehat{ABC}+\widehat{ABK}=180^0\) (vì 2 góc kề bù)

\(\Rightarrow110^0+\widehat{ABK}=180^0\)

\(\Rightarrow\widehat{ABK}=180^0-110^0\)

\(\Rightarrow\widehat{ABK}=70^0\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{KAB}=\widehat{ABK}=70^0.\)

Mà 2 góc này thuộc \(\Delta KAB\)

\(\Rightarrow\Delta KAB\) có 2 góc bằng nhau (đpcm).

Chúc bạn học tốt!

Khách vãng lai đã xóa
Nguyen An
Xem chi tiết
Đào Thị Huyền
6 tháng 10 2017 lúc 19:55

A B D C E

a) có AB// DC (gt)

mà E thuộc DC => AB // CE

=> \(\widehat{ABC}=\widehat{ECB}\)

có AC // BE (gt)

=>\(\widehat{ACB}=\widehat{EBC}\)

xét \(\Delta ABC\)\(\Delta ECB\)

có BC là cạnh chung

\(\widehat{ABC}=\widehat{ECB}\) (cmt)

\(\widehat{ACB}=\widehat{EBC}\) (cmt)

=> \(\Delta ABC=\Delta ECB\) (gcg)

=>BE = CA ( 2 cạnh tương ứng )

b) có AC = BD ( gt)

mà BE = CA (cmt)

=> BD = BE ( = CA)

=>\(\Delta BDE\) là tam giác cân tại B