cho a,b là các dố tự nhiên thoả mãn a^2=24b^4+1.chứng minh ab chia hết cho 5
Cho a và b là hai số tự nhiên thoả mãn (a+ 3) và (b +4) cùng chia hết cho 5. Chứng minh a^2+ b^2cũng chia hết cho 5.
Đáp án: Vì a+3 và b+4 chia hết cho 5=>a+3+b+4 chia hết cho 5=> a+b+7 chia hết cho 5
=>a+b có tận cùng là 8 hoặc 3
Vì a+3chia hết cho 5
Nếu a+3 có tận cùng là 0=>a có tận cùng là 2
Nếu a+3 có tận cùng là 5=>a có tận cùng là 7
Vì chia hết cho 5
Nếu b+4 có tận cùng là 0=>b có tận cùng là 6
Nếu b+4 có tận cùng là 5=>b có tận cùng là 1
Ta có: a²+b²=(...2)²+(...1)²=...5 chia hết cho 5(1)(chọn a có tận cùng là 2 và b có tận cùng là 1 vì a+b có tận cùng bằng 3)
mặt khác: a²+b²=(...7)²+(...6)²=...5 chia hết cho 5(2)(chọn a có tận cùng là 7 và b có tận cùng là 6 vì a+b có tận cùng bằng 3)
Từ (1) và (2) =>a^2 + b^2chia hết cho 5(ĐPCM)
Cho a và b là hai sô' tự nhiên thoả mãn (a + 3) và (b + 4) cùng chia hết cho 5. Chứng minh a 2 + b 2 cũng chia hết cho 5.
cho a,b,c là 3 số tự nhiên thoả mãn a + b +c chia hết cho 2 chứng minh a^2 + b^2 +c^2 chia hết cho 2
Ta có: a + b + c \(⋮\)2
Vì các số có số mũ là 2 thì luôn là số chẵn => luôn chia hết cho 2.
Nên: a2 \(⋮\)2; b2 \(⋮\)2; c2 \(⋮\)2.
Mà cả a2, b2, c2 đều chia hết cho 2 nên a2 + b2 + c2 \(⋮\)2
( Nếu ko đúng thì thôi nhá, mình chỉ nghĩ là như zậy thoi ) :(((
Cho a, b là các số tự nhiên thoả mãn a + 5b chia hết cho 7. Chứng
minh rằng 10a + b chia hết cho 7. Mệnh đề đảo lại có đúng không?
\(a+5b⋮7\Rightarrow3a+15b⋮7\)
Ta có \(\left(10a+b\right)-\left(3a+15b\right)=7a-14b=7\left(a-2b\right)⋮7\Rightarrow10a+b⋮7\)
Cho các số tự nhiên a, b, c thoả mãn 3a + 4b + 5c chia hết cho 7. Chứng minh rằng a + 6b4c cũng chia hết cho 7
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
Câu 6:
a) Cho a^n chia hết cho 5( với a,n ϵN*). Chứng tỏ rằng: a^2+2022 chia hết cho 5.
b) Tìm tất cả các dố tự nhiên x,y để: 4^x +2^3= 3^y
Cho các số tự nhiên a,b thoả mãn 2a + 9b chia hết cho 11. Chứng minh rằng (a + 10b)(2a + 96)(3a + 8b)....(10a + 6) chia hết cho 11^10