Tìm số tự nguyên x và số tự nguyên y sao cho 2016 mũ x+35=y mũ2
tìm số tự nhien x và số nguyên y sao cho 2016x+35=y2
x = 6
y = 0
bạn tham khảo nha
chúc bạn hok tốt ^-^
bài 1 : tìm giá trị nhỏ nhất của các biểu thức
a) A = 2xmũ2 - 15 b) B= 2(x + 1) mũ 2 - 17
bài 2 : tìm các số nguyên X và Y sao cho
(x + 1 ) mũ 2 +(y+1)mũ2 + ( x-y )mũ2 = 2
bài 3 : tìm số nguyên X biết
(x mũ 2-8 )(xm mũ 2 - 15)<0
1/ a) \(A=\left(2x\right)^2-15\)
Vì \(\left(2x\right)^2\ge0\)\(\Rightarrow\)\(\left(2x\right)^2-15\ge-15\)
\(\Rightarrow A_{min}=-15\Rightarrow\left(2x\right)^2=0\Rightarrow2x=0\Rightarrow x=0\)
Vậy GTNN của A = -15 khi x = 0
giúp mik với:
tìm y và x là số nguyên tố : x mũ2- 6y mũ 2 =1
a)Tìm hai số nguyên tố x, y sao cho: x mũ2-2x+1=6 y mũ2-2x+2
b, Chứng minh rằng7x + 4 y chia hết cho 37 khi và chỉ khi 13x+18 y chia hết cho 37
a) Ta có :
\(x^2-2x+1=6y^2-2x+2\)
\(\Leftrightarrow x^2=6y^2+1\)
\(\Leftrightarrow x^2-1=6y^2\)
Mà \(6y^2⋮2\)
\(\Leftrightarrow6y^2=\left(x-1\right)\left(x+1\right)⋮2\)
Mặt khác : \(\left(x-1\right)+\left(x+1\right)=2x⋮2\)
\(\Leftrightarrow x-1;x+1\)cùng chẵn
\(\Rightarrow x-1;x+1\)là hai số chẵn liên tiếp
\(\Rightarrow\left(x-1\right)\left(x+1\right)⋮8\)
\(\Leftrightarrow6y^2⋮8\)
\(\Leftrightarrow3y^2⋮4\)
\(\Leftrightarrow y^2⋮4\)
\(\Leftrightarrow y⋮2\)
Do \(y\in P\):
\(\Rightarrow y=2\)
\(\Rightarrow x=5\)
Vậy........
b) Xét hiệu : \(A=9\left(7x+4y\right)-2\left(13x+18y\right)\)
\(\Rightarrow A=63x+36y-26x-36y\)
\(\Rightarrow A=37x\)
\(\Rightarrow A⋮37\)
Vì \(7x+4y⋮37\)
\(\Rightarrow9\left(7x+4y\right)⋮37\)
Mà \(A⋮37\)
\(\Rightarrow2\left(13x+18y\right)⋮37\)
Do 2 và 37 nguyên tố cùng nhau :
\(\Rightarrow13x+18y⋮37\)
Vậy...................
a: Tìm số tự nhiên x sao cho x+15 là bội của x+3
b:tìm các số nguyên x,y sao cho {x+1}.{y-2}=3
c:tìm các số nguyên x sao cho [x+2].[y-1]=2
g:tìm 2 số tự nhiễn,y biết x+y=12 va ƯCLN[x,y]=5
h:tim 2 số tự nhiên x,y biết x+y=32 và ƯCLN=[x,y]=8
a) x+15 là bội của x+3
\(\Rightarrow\)x+15\(⋮\)x+3
\(\Rightarrow\)x+3+12\(⋮\)x+3
x+3\(⋮\)x+3
\(\Rightarrow\)12\(⋮\)x+3
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
\(\Rightarrow x\in\left\{-4;-2;-5;-1;-6;0;-7;1;-15;9\right\}\)
Vậy x\(\in\){-4;-2;-5;-1;-6;0;-7;1;-15;9}
b) (x+1).(y-2)=3
\(\Rightarrow\)x+1 và y-2 thuộc Ư(3)={1;-1;3;-3}
Có :
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
y+2 | 3 | -3 | 1 | -1 |
y | 1 | -5 | -1 | -3 |
Vậy (x;y)\(\in\){(0;1);(-2;-5);(2;-1);(-4;-3)}
Câu c tương tự câu b
g) Ta có : (x,y)=5
\(\Rightarrow\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)
Mà x+y=12
\(\Rightarrow\)5m+5n=12
\(\Rightarrow\)5(m+n)=12
\(\Rightarrow\)m+n=\(\frac{12}{5}\)
Bạn có thể xem lại đề được không ạ? Vì đến đây 12 không chia hết cho 5 nhé! Phần h bạn nên viết lại đề vì ƯCLN=[x,y]=8 tớ không hiểu lắm...
a) Cho A=3+3 mũ 2+3 mũ 3+...+3 mũ 100.Chứng minh A chia hết cho 120
b) Cho n là số nguyên tố lớn hơn 3. Hỏi n mũ 2+2006 là số nguyên tố hay hợp số
c) Tìm các số tự nhiên x và y biết 2 mũ x+624=5 mũ y
b) n mũ 2 + 2006 là hợp số
hai câu còn lại ko bt
Hok tốt
^_^
a, \(A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=120+3^4.\text{}\text{}\text{}\text{}\left(3+3^2+3^3+3^4\right)+...+3^{96}.\left(3+3^2+3^3+3^4\right)\)
\(=120+3^4.110+...+3^{96}.120\)
\(=120.\left(1+3^4+...+3^{96}\right)⋮120\)
\(\RightarrowĐPCM\)
Hok Tốt!
# mui #
1.Tìm các số tự nhiên x và y để các số sau là số nguyên tố:
a) (3-x)(2-y) b) (7-x)(5-y)
2.Chứng minh 2005 mũ 108 - 1 và 2005 mũ 108 + 1 không thể đồng thời là số nguyên tố
3.Tìm số nguyên tố p sao cho :
a) p+7 và p+4 là các số nguyên tố b) p+26 và p+14 và p+12 và p+18 là các số nguyên tố
a) Tìm tất cả các cặp số tự nhiên (x,y) sao cho: 4x+5y=35
b) Tìm tất cả các cặp số tự nhiên khác 0 (x,y) sao cho: (2x+5).(x+2)=3y
c) Tìm các số nguyên tố x,y thỏa mãn: 272x=11y+29
d) Chứng minh rằng với mọi số tự nhiên n thì: (10n+72n-1) chia hết cho 81
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n