Cho tỉ lệ thức a/b=b/c.CMR:(a^2+b^2)/(b^2+c^2)=a/c
Cho tỉ lệ thức : ab/bc = b/c.CMR: a2 + b2 / b2+c2= a/c
bài này hình như sai đề rồi bn ơi ko thì viết lại đề giùm mk cái, khó đọc quá
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh rằng ta có các tỉ lệ thức sau (giả thiết các tỉ lệ thức là có nghĩa ) :
a) \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
b) \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
cho tỉ lệ thức a/b=c/d.cmr ta có tỉ lệ thức sau: (a+c/c+d)^2=a^2+b^2/c^2+d^2
Cho tỉ lệ thức: ab/bc = b/c với c khác 0
Chứng minh tỉ lệ thức a^2 + b^2/b^2 + c^2 = a/c
Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -d
Cmr: a+b/b=c+d/d
Câu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.
Cmr: a/a+b=c/c+d
Câu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)
Cmr a/b=c/d
Câu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0
Cmr ac/bd=a^2+c^2 /b^2+d^2
Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d
Cmr: (a-b)^2/(c-d)^2=ab/cd
Câu 6: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và khác-d
Cmr: (a+b)^2014/(c+d)^2014=a^2014+b^2014/c^1014+d^2014
Câu 7:cho a/c=c/d với a,b,c khác 0
Cmr a/b=a^2+c^2/b^2+d^2
Câu 8: cho a/c=c/d với a,b,c khác 0
Cmr b-a/a=b^2-a^2/a^2+c^2
Câu 9:cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và a khác âm dương 5/3b; khác âm dương 5/3d khác 0
Cmr: các tỉ lệ thức sau: 3a+5b/3a-5b=3c+5d/3c-5d
Câu 10: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0
Cmr: 7a^2+5ac/7b^2-5ac=7a^2+5bd/7b^2-5bd
Câu 1
Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)
=> ĐPCM
Câu 2
Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)
=> ĐPCM
Câu 3
Câu 3
Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)
=> ĐPCM
Câu 4
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)
Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ (1) và (2) => ĐPCM
Mày là thằng anh tuấn lớp 7c trường THCS yên lập đúng ko
Cho tỉ lệ thức a/b=c/d. CM các tỉ lệ thức sau:
a;a^2-b2/ab=c^2-d^2/cd
b;(a+b^2)/a^2+b^2=a^3+b^3/c^3+d^3
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\frac{a^2-b^2}{ab}=\frac{\left(bk\right)^2-b^2}{bk.b}=\frac{b^2.k^2-b^2}{b^2k}=\frac{b^2\left(k^2-1\right)}{b^2k}=\frac{k^2-1}{k}\left(1\right)\)
\(\frac{c^2-d^2}{cd}=\frac{\left(dk\right)^2-d^2}{dk.d}=\frac{d^2k^2-d^2}{d^2k}=\frac{d^2\left(k^2-1\right)}{d^2.k}=\frac{k^2-1}{k}\left(2\right)\)
Từ (1) và (2)=>\(\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\).
Cho tỉ lệ thức: a/b=b/c. Chứng minh rằng ta có tỉ lệ thức
\(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
Lời giải
Ta có: \(\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a.b}{b.c}=\frac{a}{c}\) (1)
Mặt khác,áp dụng t/c tỉ dãy số bằng nhau,ta có:\(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\) (2)
Từ (1) và (2) ta có đpcm (điều phải chứng minh)
đặt \(\frac{a}{b}=\frac{b}{c}=k\)=> a= bk; b= ck
xét:
+) \(\frac{a^2+b^2}{b^2+c^2}\)=\(\frac{b^2k^2+c^2k^2}{c^2k^2+c^2}\)=\(\frac{k^2\left(b^2+c^2\right)}{c^2\left(k^2+1\right)}\)=\(\frac{k^2\left(c^2k^2+c^2\right)}{c^2\left(k^2+1\right)}\)=\(\frac{k^2c^2\left(k^2+1\right)}{c^2\left(k^2+1\right)}\)=\(k^2\)
+) \(\frac{a}{c}\)=\(\frac{bk}{c}=\frac{ckk}{c}=k^2\)
=> \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)đpcm
cho tỉ lệ thức a/b = c/d. chứng minh các tỉ lệ thức sau a^2-b^2 / ab = c^2-d^2/cd ,
Lần sau bạn cho thêm cả dấu ngoặc cho dễ hiểu nhé :v
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) \(\left(b,d\ne0\right)\)
Thay \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) vào \(\frac{a^2-b^2}{ab}\) và \(\frac{c^2-d^2}{cd}\) ta có :
\(\left\{{}\begin{matrix}\frac{\left(b.k\right)^2-b^2}{b.k.b}\\\frac{\left(d.k\right)^2-d^2}{d.k.d}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2.k^2-b^2}{b^2.k}\\\frac{d^2.k^2-d^2}{d^2.k}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2\left(k^2-1\right)}{b^2.k}\\\frac{d^2\left(k^2-1\right)}{d^2.k}\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}\frac{k^2-1}{k}\\\frac{k^2-1}{k}\end{matrix}\right.\)(vì b,d khác 0 nên \(b^2,d^2\) khác 0)
=> \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) (vì cùng bằng \(\frac{k^2-1}{k}\))
vậy \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) nếu \(\frac{a}{b}=\frac{c}{d}\)
lâu lắm không làm nên không chắc đâu :v
Cho tỉ lệ thức a/b=c/d . chứng minh rằng ta có các tỉ lệ thức sau ( giả thiết các tỉ lệ thức đều có nghĩa) : a) 2a+3b/2a-3b = 2c+3d/2c-3d b) ab/cd= a^2 - b^2/c^2 - d^2 c) (a+b/c+d)^2 = a^2+b^2/c^2+d^2