2*l1/2*x-1/3l-3/2=1/4
làm đi tick cho
Giải phương trình 1,l1-5xl-1=3
2,4l2x-1l+3=15
3,lx+4l=2x+1
4,l3x-4l=x-3
5,l2x-3l=3-2x
6,l3x-1l=x+4
7,lx^2-2x+1l=4
8,l1-xl+l4-xl=3
1: |1-5x|-1=3
=>|5x-1|=4
=>5x-1=4 hoặc 5x-1=-4
=>5x=5 hoặc 5x=-3
=>x=1 hoặc x=-3/5
2: 4|2x-1|+3=15
=>4|2x-1|=12
=>|2x-1|=3
=>2x-1=3 hoặc 2x-1=-3
=>x=2 hoặc x=-1
3,\(\left|x+4\right|=2x+1\)
TH1: x+4≥0⇔x≥-4,pt có dạng:
x+4=2x+1⇔-x=-3⇔x=3(t/m)
TH2:x+4<0⇔x<-4,pt có dạng:
-x-4=2x+1⇔-3x=5⇔x=\(\dfrac{-5}{3}\)(loại)
Vậy pt đã cho có tập nghiệm S=\(\left\{3\right\}\)
4,\(\left|3x+4\right|=x-3\)
TH1: 3x-4≥0⇔3x≥4⇔x≥\(\dfrac{4}{3}\),pt có dạng:
3x-4=x-3⇔2x=1⇔x=\(\dfrac{1}{2}\)(loại)
TH2: 3x-4<0⇔3x<4⇔x<\(\dfrac{4}{3}\),pt có dạng:
-3x+4=x-3⇔-4x=-7 ⇔x=1,75(loại)
Vậy pt đã cho vô nghiệm
Tìm x biết:
l2x-1l+3x=2
l1-3xl-2x=4
3x-l2x+3l=1
4x+l3x-1l=2
5x-l1-2xl=5
a) \(\left|2x-1\right|+3x=2\)
\(TH1\) \(2x-1+3x=2\) \(TH2\) \(2x-1+3x=-2\)
\(5x=3\) \(5x=-1\)
\(x=\frac{3}{5}\) \(x=\frac{-1}{5}\)
vậy \(x=\frac{3}{5}\) HOẶC \(x=\frac{-1}{5}\)
b) \(\left|1-3x\right|-2x=4\)
\(TH1\) \(1-3x-2x=4\) \(TH2\) \(1-3x-2x=-4\)
\(-5x=3\) \(-5x=-5\)
\(x=\frac{-3}{5}\) \(x=1\)
vậy \(x=\frac{-3}{5}\) HOẶC \(x=1\)
c) \(3x-\left|2x+3\right|=1\)
\(TH1\) \(3x-2x+3=1\) \(TH2\) \(3x-2x+3=-1\)
\(x=-2\) \(x=-4\)
vậy \(x=-2\) HOẶC \(x=-4\)
d) \(4x+\left|3x-1\right|=2\)
\(TH1\) \(4x+3x-1=2\) \(TH2\) \(4x+3x-1=-2\)
\(7x=3\) \(7x=-1\)
\(x=\frac{3}{7}\) \(x=\frac{-1}{7}\)
vậy \(x=\frac{3}{7}\) HOẶC \(x=\frac{-1}{7}\)
e) \(5x-\left|1-2x\right|=5\)
\(TH1\) \(5x-1-2x=5\) \(TH2\) \(5x-1-2x=-5\)
\(3x=6\) \(3x=-4\)
\(x=2\) \(x=\frac{-4}{3}\)
vậy \(x=2\) HOẶC \(x=\frac{-4}{3}\)
mk làm lun
1,
(1)= 2x-1+3x=2
= 5x-1=2
x= 3/5
(2) = -2x+1+3x = 2
= x+1=2
x= 1
2,
(1)= 1-3x-2x = 4
= 1-5x= 4
-5x= 3
x= -3/5
(2)= -1+3x -2x =4
= -1+x= 4
x= 5
3,
(1) 3-2x+3=1
= 3-2x+3=1
= 6-2x=1
=-2x= -5
x= 5/2
(2)= 3-2x-3=1
- -2x = 1
x= -1/2
4,
(1)=4x +3x -1 = 2
= 7x-1=2
= 7x=3
x= 3/7
(2)= 4x-3x+1=2
x+1=2
x=1
5,
(1) = 5x-1-2x=5
3x-1=5
= 3x=6
x= 2
(2)= 5x-1+2x=5
7x-1=5
7x=6
x= 6/7
chú ý (1) , (2) vì nó có 2 trg hợp lên mk ghi vậy
Tìm GTNN của biểu thức:
a. A=5+l1/3-xl
b. B=2.lx-2/3l-1
a) Vì |1/3 - x| \(\ge\) 0 => 5 + |1/3 - x| \(\ge\) 5
Để dấu "=" xảy ra thì |1/3 - x| = 0 hay 1/3 - x = 0 => x = 1/3
Vậy min A = 5 khi x = 1/3
b) Vì |x - 2/3| \(\ge\) 0 => 2|x - 2/3| - 1 \(\ge\) -1
Để dấu "=" xảy ra thì x - 2/3 = 0 => x = 2/3
=> min B = -1 khi x = 2/3
l2x-1l+3x=2
l1-3xl-2x=4
3x-l2x+3l=1
4x+l3x-1l=2
5x-l1-2xl=5
x/3=y/5 và x^2-y^2=-4
Làm nhanh giúp mik nha
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=k\Rightarrow x=3k;y=5k\)
\(x^2-y^2=-4\\ \Rightarrow9k^2-25k^2=-4\\ \Rightarrow-16k^2=-4\Rightarrow k^2=4\\ \Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6;y=10\\x=-6;y=-10\end{matrix}\right.\)
Tìm x để biểu thức:
A= 0,6+ l1/2-xl đạt giá trị nhỏ nhất.B= 2/3- l2x+2/3l đạt giá trị lớn nhất1) Vì l 1/2-x l \(\ge0\) nên A đạt giá trị nhỏ nhất khi l 1/2-x l = 0
=> 1/2 -x =0 => x=1/2
2) Để B lớn nhất thì l 2x+2/3 l nhỏ nhất
=> l 2x + 2/3 l = 0
=> 2x + 2/3 = 0
=> 2x = -2/3
=> x = -1/3
1) ta có I 1/2 -xI\(\ge\)0
=>A=0,6+I 1/2 -xI\(\ge\)0,6
Dấu = xảy ra khi 1/2-x=0
x=1/2
Vậy GTNN của A là 0,6 tại x=1/2
2) ta có I2x+2/3I\(\ge\)0
=>-I2x+2/3I\(\le\)
=>B=2/3-I2x+2/3I\(\le\)2/3
Dấu = xảy ra khi 2x+2/3=0
2x =-2/3
x =-2/3:2
x =-1/3
Vậy GTLN của B là 2/3 tại x=-1/3
(x+2)^2 < 2x(x+2)+4
làm chi tiết giúp tớ vs ạ
\((X+2)^{2}\)<2X(X+2)+4
\(X^{2}\)+4X+4<\(2X^{2}\) + 4X +4
\(X^{2}\)+4X- \(2X^{2}\)-4X< -4+4
-\(X^{2}\) < 0
X thuộc R
Tìm số tự nhiên x,y biết : a, (x-4)(y+1) = 8 b, (2x+3)(y-2) = 15 c, x.y + 2x + y = 12 d, x.y - x - 3y = 4
Làm hộ mik nhé, mk đag cần gấp :'((((
Giải:
a) \(\left(x-4\right).\left(y+1\right)=8\)
\(\Rightarrow\left(x-4\right)\) và \(\left(y+1\right)\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Ta có bảng giá trị:
x-4 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
y+1 | -1 | -2 | -4 | -8 | 8 | 4 | 2 | 1 |
x | -4 | 0 | 2 | 3 | 5 | 6 | 8 | 12 |
y | -2 | -3 | -5 | -9 | 7 | 3 | 1 | 0 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
Vậy \(\left(x;y\right)=\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
b) \(\left(2x+3\right).\left(y-2\right)=15\)
\(\Rightarrow\left(2x+3\right)\) và \(\left(y-2\right)\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
2x+3 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
y-2 | -1 | -3 | -5 | -15 | 15 | 5 | 3 | 1 |
x | -9 | -4 | -3 | -2 | -1 | 0 | 1 | 6 |
y | 1 | -1 | -3 | -13 | 17 | 7 | 5 | 3 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
c) \(xy+2x+y=12\)
\(\Rightarrow x.\left(y+2\right)+\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right).\left(y+2\right)=14\)
\(\Rightarrow\left(x+1\right)\) và \(\left(y+2\right)\inƯ\left(14\right)=\left\{1;2;7;14\right\}\)
x+1 | 1 | 2 | 7 | 14 |
y+2 | 14 | 7 | 2 | 1 |
x | 0 | 1 | 6 | 13 |
y | 12 | 5 | 0 | -1 |
Vì \(\left(x;y\right)\in N\) nên \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
Vậy \(\left(x;y\right)\in\left\{\left(0;12\right);\left(1;5\right);\left(6;0\right)\right\}\)
d) \(xy-x-3y=4\)
\(\Rightarrow y.\left(x-3\right)-\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right).\left(x-3\right)=7\)
\(\Rightarrow\left(y-1\right)\) và \(\left(x-3\right)\inƯ\left(7\right)=\left\{1;7\right\}\)
Ta có bảng giá trị:
x-3 | 1 | 7 |
y-1 | 7 | 1 |
x | 4 | 10 |
y | 8 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(4;8\right);\left(10;2\right)\right\}\)
a) |x|+x=1/3
b) |x|-x=3/4
Làm gấp vs mn
\(a,\Leftrightarrow\left|x\right|=\dfrac{1}{3}-x\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}-x\left(x\ge0\right)\\x=x-\dfrac{1}{3}\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\left(tm\right)\\0x=-\dfrac{1}{3}\left(vô.nghiệm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{1}{6}\)
\(b,\Leftrightarrow\left|x\right|=\dfrac{3}{4}+x\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}+x\left(x\ge0\right)\\x=-\dfrac{3}{4}-x\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0x=\dfrac{3}{4}\left(vô.nghiệm\right)\\x=-\dfrac{3}{8}\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow x=-\dfrac{3}{8}\)