tìm x thoả mãn x-1/x + x-2/x + x-3/x + ... + 1/x = 3
Bài 1 : Tìm các số tự nhiên \(x\) thoả mãn : \(2^x+3^x=35\)
Bài 2 : Tìm \(x;y\inℤ^+\) thoả mãn : \(x!+y!=\left(x+y\right)!\)
Bài 3 : Chứng minh rằng phương trình sau không có nghiệm nguyên :
\(x^{17}+y^{17}=19^{17}\)
Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).
Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,
Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)
Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.
Như vậy, \(x=y=1\)
Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.
Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)
Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn.
Vậy pt đã cho không có nghiệm nguyên dương.
Chị độc giải sau khi em biết làm thôi à.
Tìm x, y thoả mãn: |x - 1| + |x - 2| + |y - 3| + |x - 4|
| x - 1| + | x - 2| + | y - 3| + | x - 4|
= 179/28 + 151/28 + 3 + 95/28
= 509/28
3. Tìm các số tự nhiên x,y thoả mãn điều kiện x^2 − x + 1 = 3^y
3. Tìm các số tự nhiên x,y thoả mãn điều kiện x^2 − x + 1 = 3^y
Bài 1: a, Tìm GTNN của A = ∣x - 3∣ + ∣x - 4∣ + ∣x - 7∣ b, Tìm x, y thoả mãn ∣x - 2∣ + ∣ y²⁰ + 9∣ = 9
a.
\(A=\left|x-3\right|+\left|x-4\right|+\left|x-7\right|\)
\(A=\left|x-3\right|+\left|7-x\right|+\left|x-4\right|\)
Áp dụng BĐT trị tuyệt đối:
\(A\ge\left|x-3+7-x\right|+\left|x-4\right|\)
\(\Rightarrow A\ge4+\left|x-4\right|\ge4\)
\(\Rightarrow A_{min}=4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-3\right)\left(7-x\right)\ge0\\x-4=0\end{matrix}\right.\) \(\Rightarrow x=4\)
Câu b đã giải bên dưới
tìm x thoả mãn \(\left(\sqrt{x}-4\right)\left(|x+2|-1\right)\left(x^2-3\right)=0\)
\(x\ge0\)
\(\left(\sqrt{x}-4\right)\left(|x+2|-1\right)\left(x^2-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-4=0\Rightarrow x=16\left(tm\right)\\|x+2|-1=0\Leftrightarrow\left[{}\begin{matrix}x+2=1\Rightarrow x=-1\\x+2=-1\Rightarrow x=-3\end{matrix}\right.\\x^2-3=0\Rightarrow x=\pm\sqrt{3}\end{matrix}\right.\)
Tìm x thoả mãn điều kiện cho trước
1. (x-2).(x+2)-(x-3).(x+5)=0
2.( 3.x^2-x+1).(x-1)+x^2.(4-3.x)=5/2
3.(2.x-1).(3-x)+(x-2).(x+3)=(-x).(x-2)
tìm tổng của các số nguyên thoả mãn :
1) -4<x<3
2) -5<x<5
3) -10<x<6
4) -6<x<5
5) -5<x<2
1) \(-4< x< 3\)
\(\Rightarrow x\in\left\{-3;-2;-1;0;1;2\right\}\)
Tổng:
\(\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1+2\)
\(=\left(-2+2\right)+\left(-1+1\right)+0-3\)
\(=-3\)
2) \(-5< x< 5\)
\(\Rightarrow x\in\left\{-4;-3;-2;-1;0;1;2;3;4\right\}\)
Tổng:
\(\left(-4\right)+\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1+2+3+3\)
\(=\left(-4+4\right)+\left(-3+3\right)+\left(-2+2\right)+\left(-1+1\right)+0\)
\(=0\)
3) \(-10< x< 6\)
\(\Rightarrow x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
Tổng:
\(\left(-9\right)+\left(-8\right)+\left(-7\right)++\left(-6\right)+\left(-5\right)+\left(-4\right)+\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1+2+3+4+5\)
\(=-24\)
4) \(-6< x< 5\)
\(\Rightarrow x\in\left\{-5;-4;-3;-2;-1;0;1;2;3;4\right\}\)
Tổng:
\(\left(-5\right)+\left(-4\right)+\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1+2+3+4\)
\(=\left(-4+4\right)+\left(-3+3\right)+\left(-2+2\right)+\left(-1+1\right)+0-5\)
\(=-5\)
5) \(-5< x< 2\)
\(\Rightarrow x\in\left\{-4;-3;-2;-1;0;1\right\}\)
Tổng:
\(\left(-4\right)+\left(-3\right)+\left(-2\right)+\left(-1\right)+0+1\)
\(=\left(-1+1\right)+0+\left(-4-3-2\right)\)
\(=-6\)