Cho ▲ABC có AB= 3cm AC=6cm ,góc A=120° kẻ phân giác AD tính AD
1. Cho tam giác ABC có góc A= 120 độ, AB=3cm, AC=6cm, AD là phân giác. Tính AD
Qua D kẻ DE // AB ( E \(\in\)AB )
Vì AD là phân giác góc A của \(\Delta ABC\):
\(\Rightarrow\)\(\frac{DC}{DB}=\frac{AC}{AB}\)
\(\Rightarrow\) \(\frac{DC}{DB+DC}=\frac{AC}{AB+AC}\)hay \(\frac{DC}{BC}=\frac{6}{3+6}\)\(\Leftrightarrow\)\(\frac{DC}{BC}=\frac{2}{3}\)(1)
Ta có : AB là phân giác góc A \(\Rightarrow\)\(\widehat{A_1}=\widehat{A_2}=\frac{\widehat{BAC}}{2}=\frac{120}{2}=60^0\)
Mà \(\widehat{A_1}=\widehat{D_1}=60^0\)( so le trong , DE // AB )
\(\Rightarrow\widehat{A_2}=\widehat{D_1}=60^0\Rightarrow\)\(\Delta ADE\)đều
\(\Rightarrow\)AD = DE
Vì DE // AB ( cách dựng )
Xét \(\Delta ABC\)theo hệ quả định lý Ta-lét ta có:\(\frac{DE}{AB}=\frac{DC}{BC}\)(2)
Thế (1) vào (2) ta được :\(\frac{DE}{AB}=\frac{2}{3}\)hay \(\frac{DE}{3}=\frac{2}{3}\)
\(\Rightarrow DE=\frac{2.3}{3}=2\left(cm\right)\)
\(\Rightarrow AD=2\left(cm\right)\)( AD=DE chứng minh trên )
Cho tam giác abc có góc a bằng 120 độ, ab bằng 3cm, ac bằng 6cm. Tính độ dài đường phân giác ad
cho tam giác ABC
có góc A = 120 độ, AB= 3cm, AC= 6cm
tính đường phan giác AD
bài 11 ΔABC có góc BAC = ,AB=6cm,AC=12 cm ,phân giác góc BAC cắt BC tại D.Tính AD?
bài 12 cho tam giác ABC có góc A =, AB=3cm,AC=6cm.Tính độ dài đường phân giác AD?
11:
\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot6\cdot12}{6+12}\cdot\dfrac{1}{2}=4\left(cm\right)\)
12:
\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot3\cdot6}{3+6}\cdot\dfrac{1}{2}=\dfrac{3\cdot6}{3+6}=\dfrac{18}{9}=2\left(cm\right)\)
cho tam giác abc có ab=3 ac=6 , góc a=120 .kẻ tia phân giác ad. tính ad
Cho tam giác ABC có AD là tia phân giác của góc BAC. Biết AB = 3cm, BD = 4cm, CD = 6cm. Tính AC?
A. 4cm
B. 5cm
C. 6cm
D. 4,5cm
Theo tính chất tia phân giác của góc ta có:
Suy ra:
Chọn đáp án D
Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm. Phân giác AD. Kẻ DH vuông góc với AB. Tính DH,AD.
Áp dụng Pitago ta có : BC = 10
Áp dụng tính chất của tia phân giác ta có : BD/DC = AB/AC = 3/4
=> BD/BC = 3/7 => BD = 30/7 cm, CD = 40/7 cm
HD // AC => HD / AC = BD / BC
=> HD = 30/70.8 = 24/7
Do góc HAD = 45 độ => T/g HAD vuông cân => AD^2 = 1152/49 => AD = \(\frac{24\sqrt{2}}{7}\)cm
Cho tam giác ABC vuông tại A, AB 6cm, AC 8cm. Phân giác AD. Kẻ DH vuông góc với AB. Tính DH,AD.
Vì \(AC\perp AB;HD\perp AB\Rightarrow AC//HD\)
Áp dụng hệ quả Ta lét ta có : \(\frac{BD}{BC}=\frac{HD}{AC}\)(*)
Vì AD là đường phân giác ^A nên : \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)
Lại có : \(BC^2=AB^2+AC^2=36+64=100\Rightarrow BC=10\)cm
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{DC+BD}{AC+AB}=\frac{10}{14}=\frac{5}{7}\)
\(\Rightarrow DC=\frac{5}{7}AC=\frac{5}{7}.8=\frac{40}{7}\)cm ; \(BD=\frac{5}{7}AB=\frac{5}{7}.6=\frac{30}{7}\)cm
Thay vào (*) ta được : \(\frac{\frac{30}{7}}{10}=\frac{HD}{8}\Rightarrow10HD=\frac{240}{7}\Rightarrow HD=\frac{24}{7}\)cm
Có : \(\frac{BH}{AB}=\frac{HD}{AC}\)( hệ quả Ta lét ) \(\Rightarrow BH=\frac{AB.HD}{AC}=\frac{6.\frac{24}{7}}{8}=\frac{18}{7}\)cm
\(\Rightarrow AH=AB-BH=6-\frac{18}{7}=\frac{24}{7}\)cm
Áp dụng định lí Pytago tam giác AHD vuông tại H ta có :
\(AD^2=AH^2+HD^2=\left(\frac{24}{7}\right)^2+\left(\frac{24}{7}\right)^2=2\left(\frac{24}{7}\right)^2\)
\(\Rightarrow AD=\frac{24\sqrt{2}}{7}\)cm o.O bạn check lại xem nhé
Tam giác ABC, góc A=90độ, AB= 6cm, AC= 8cm. Kẻ phân giác AD.
a, Tính BD, DC
b, Kẻ DH vuông góc với AB. Tính DH, AD