Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Khánh Huyền
Xem chi tiết
khanh cuong
17 tháng 3 2020 lúc 9:44

Nếu n = 2 => n + 2 = 4 chia hết cho 2,  là hợp số < loại >

Nếu n = 3 => n + 2 = 5 ; n + 4 = 7 là SNT < thỏa mãn > 

Nếu n > 3 => n sẽ có 2 dạng là 3k + 1; 3k + 2 ( k thuộc N*)

Với n = 3k + 1 => n + 2 = 3k+ 1 + 2 = 3k + 3 chia hết cho 3 , là hợp số < loại >

Với n = 3k + 2 => n + 4 = 3k + 2+ 4 = 3k + 6 chia hết cho 3 , là hợp số < Loại >

Vậy n = 3 

Khách vãng lai đã xóa
Lê Vinh
22 tháng 4 lúc 19:30

 

Ta có:

Nếu n chia 3 dư 1 => n + 2 ⋮ 3 (loại)

Nếu n chia 3 dư 2 => n + 4 ⋮ 3 (loại)

Vậy n = 3

nguyenvanhoang
Xem chi tiết
nguyenvanhoang
10 tháng 11 2014 lúc 6:31

làm lời giải ra cho mình

Changhu
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 1 2022 lúc 0:02

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

Nguyễn Việt Lâm
12 tháng 1 2022 lúc 15:09

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)

Tran Thi Thao Ly
Xem chi tiết
Lê Thị Bích Tuyền
1 tháng 11 2015 lúc 19:36

Bài 2 : c)

+Nếu p = 2 ⇒ p + 2 = 4 (loại)

+Nếu p = 3 ⇒ p + 6 = 9 (loại)

+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)

+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4

   -Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)

   -Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮ 5 (loại)

   -Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮ 5 (loại)

   -Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮ 5 (loại)

⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn

Vậy p = 5 là giá trị cần tìm
Bài 4 : Tích của hai số tự nhiên là số nguyên tố nên một số là 1, số còn lại (kí hiệu a) là số nguyên tố.

Theo đề bài, 1 + a cũng là số nguyên tố. Xét hai trường hợp : 

 - Nếu 1 + a là số lẻ thì a là số chẵn. Do a là ....
Còn lại bạn tự làm nha , mình mỏi tay quá !

Khúc Thị Ngân Hà
Xem chi tiết
Đăng Bùi
Xem chi tiết
Đăng Bùi
22 tháng 9 2023 lúc 16:54

giúp mik đi 

xin đấy

Đăng Bùi
25 tháng 9 2023 lúc 22:14

app như cc

hỏi ko ai trả lời

Đoàn Phương Linh
Xem chi tiết
Dương Mai Ngân
Xem chi tiết