Chứng minh rằng: 1+1/2+1/3+1/4+...+1/63 < 6
Bài 6: Cho A =1+1/2+1/3+1/4+...+1/63. Chứng minh rằng: A > 3
Chứng minh rằng:
1 + 1/2 + 1/3 + 1/4 +...+ 1/63 <6
trước hết ta cần chứng minh bài toán 1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)<n/(k+1... với n>2,k thuộc N*
Thật vậy vì k thuộc N*nên ta có
k+1=k+1=>1/(k+1)= 1/(k+1)
k+2>k+1=>1/(k+2)<1/(k+1)
k+3>k+1=>1/(k+3)< 1/(k+1)
…
k+n>k+1=>1/(k+n)< 1/(k+1)
=>1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)<
1/(k+1)+ 1/(k+1)+…+ 1/(k+1) (có n số 1/(k+1) )
=>1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)
<n/(k+1)
…………………………
Áp dụng bài toán trên ta có
1=1
1/2+1/3
=1/(1+1)+1/(1+2)
<2/(1+1)=2/2=1
1/4+1/5+1/6+1/7
=1/(3+1)+1/(3+2)+1/(3+3)+1/(3+4)
<4/(3+1)=4/4=1
1 / 8 +1/9 ... +1/15
=1/(7+1)+1/(7+2)+…+1/(7+8)
<8/(7+1)=8/8=1
1/16+1/17+..+1/31
=1/(15+1)+1/(15+2)+….+1/(15+16)
<16/(15+1)=16/16=1
1/32+1/33+…+1/63
=1/(31=1)+1/(32+1)+…+1/(31+32)
< 32/(31+1)=32/32 = 1
=>1/2 + 1/3+…+1/63<1+1+1+1+1+1
=>1/2 + 1/3+…+1/63<6 \(\left(ĐPCM\right)\)
~~~ Chúc các bạn học giỏi ~~~
Chứng minh rằng 3 < 1+1/2+1/3+1/4+1/5+...+1/62+1/63<6
Chứng minh rằng:
B=1+1/2+1/3+1/4+...+1/63<6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => B < 6
Đặng Trần Tây Thi
xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => B < 6
Chứng minh rằng: 3 lớn hơn 1+1/2+1/3+1/4+....+1/63 nhỏ hơn 6
chứng minh rằng:
3 < H =1+1/2+1/3+1/4+......+1/63 <6
trước hết ta cần chứng minh bài toán 1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)<n/(k+1... với n>2,k thuộc N*
Thật vậy vì k thuộc N*nên ta có
k+1=k+1=>1/(k+1)= 1/(k+1)
k+2>k+1=>1/(k+2)<1/(k+1)
k+3>k+1=>1/(k+3)< 1/(k+1)
…
k+n>k+1=>1/(k+n)< 1/(k+1)
=>1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)<
1/(k+1)+ 1/(k+1)+…+ 1/(k+1) (có n số 1/(k+1) )
=>1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)
<n/(k+1)
…………………………
Áp dụng bài toán trên ta có
1=1
1/2+1/3
=1/(1+1)+1/(1+2)
<2/(1+1)=2/2=1
1/4+1/5+1/6+1/7
=1/(3+1)+1/(3+2)+1/(3+3)+1/(3+4)
<4/(3+1)=4/4=1
1 / 8 +1/9 ... +1/15
=1/(7+1)+1/(7+2)+…+1/(7+8)
<8/(7+1)=8/8=1
1/16+1/17+..+1/31
=1/(15+1)+1/(15+2)+….+1/(15+16)
<16/(15+1)=16/16=1
1/32+1/33+…+1/63
=1/(31=1)+1/(32+1)+…+1/(31+32)
<32/(31+1)=32/32=1
=>1 / 2 + 1 / 3+…+1/63<1+1+1+1+1+1
=>1 / 2 + 1 / 3+…+1/63<6 (đpcm)
Thiên Thảo bài quy nạp rất hay .
Chứng minh rằng:
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{63}\)
Chứng minh rằng: \(A< 6\)
Ta có:
\(\frac{1}{2}< 6\)
\(\frac{1}{3}< 6\)
\(...\)
\(\frac{1}{63}< 6\)
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{63}< 6\)
\(\Rightarrow A< 6\left(dpcm\right)\)
\(#Jen\)
Trao đổi nếu cần
nếu làm như bạn thì tổng A < 6 + 6 + 6 +...+ 6 chứ không phải 6 :((((
Chứng minh rằng
a, B= 1+1/2+1/3+1/4+....+1/63 <6
b, C =1/2.3/4.5/6.....9999/10000 <1/100
B< 1+(1/1.2+1/2.3+...+1/62.63)
B<1+(1-1/2+1/2-1/3+...+1/62-1/63)
B<1+1-1/63
B<2-1/63
B<6-3/189
mà 6-3/189<6
Vậy B<6
b, gọi D=2/3.4/5....10000/10001
Ta có: 1/2<2/3 3/4<4/5 .. ..... 9999/10000<10000/10001
=> C<D 1
C.D=1/2.3.4.....9999/10000.2/3.4/5...10000/10001
C.D=1/10001 2
Từ 1 : C<D => C.C<C.D<1/10001
=>C^2<1/10001<1/10000
=>C^2<(1/100)^2
Vậy C<1/100 (đpcm)
chứng minh rằng 1/2+1/3+1/4+...+1/63>2