chứng minh rằng : S=6/2.5 + 6/5.8 + .... + 6/26.29 + 6/29/32 < 1
S=6/2.5+6/5.8+6/8.11+...+6/29.32 Tính tổng S và chứng minh S<1
\(S=\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+...+\frac{6}{29.32}\)
\(S=2.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\right)\)
\(S=2.\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(S=2.\frac{15}{31}\Rightarrow S=\frac{15}{16}< 1\)
\(S=\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+...+\frac{6}{29.32}\)
\(S=\left(\frac{1}{2}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{11}\right)+...+\left(\frac{1}{29}-\frac{1}{32}\right)\)
\(S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{29}-\frac{1}{32}\)
\(S=\frac{1}{2}-\frac{1}{32}\)
\(S=\frac{17}{32}< 1\)
S=6/2.5+6/5.8+6/8.11+...+6/29.32
S=2.(1/2-1/5+1/5-1/8+1/8-1/11+...+1/29-1/32)
S=2.(1/2+1/32)
S=2.15/32
S=30/32=15/16
=>S<1
Tính tổng \(S=\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+...........+\frac{6}{29.32}\) và chứng tỏ tổng S < 1
\(S=\frac{6}{2.5}+\frac{6}{5.8}+.......+\frac{6}{29.32}\)
\(S=2\left(\frac{3}{2.5}+\frac{3}{5.8}+......+\frac{3}{29.32}\right)\)
\(S=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+......+\frac{1}{29}-\frac{1}{32}\right)\)
\(S=2\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(S=2.\frac{15}{32}\)
\(S=\frac{15}{16}< 1\RightarrowĐPCM\)
Vậy \(S=\frac{15}{16}\)
Bài 1: Học kỳ I, lớp 6C có số học sinh khá bằng \(\dfrac{4}{5}\) số học sinh cả lớp. Sang học kỳ II, số học sinh khá tăng thêm 3 bạn( số học sinh cả lớp không đổi) và bằng\(\dfrac{7}{8}\) số học sinh cả lớp.
a, Tính số học sinh lớp 6C
b,Tính tỉ số số học sinh khá học kỳ II so với học sinh cả lớp
Bài 2:
Chứng minh rằng: S=\(\dfrac{6}{2.5}+\dfrac{6}{5.8}+...+\dfrac{6}{26.29}+\dfrac{6}{29.32}< 1\)
2)
S = \(\dfrac{6}{2.5}\) + \(\dfrac{6}{5.8}\) + ... + \(\dfrac{6}{26.29}\)+ \(\dfrac{6}{29.32}\)
= 2.\(\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{29.32}\right)\)
= \(2.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{29}-\dfrac{1}{32}\right)\)
= 2.\(\left(\dfrac{1}{2}-\dfrac{1}{32}\right)\)
= 1 - \(\left(2.\dfrac{1}{32}\right)\)< 1
Vậy S < 1
Tính và so sánh với 1:
S=6/2.5+6/5.8+6/8.11+...+6/29.32
\(S=2.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{29.32}\right)\)
\(S=2.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)
\(S=2.\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(S=1-\frac{1}{16}< 1\)
Vậy \(S< 1\)
\(\dfrac{6}{2.5}+\dfrac{6}{5.8}+\dfrac{6}{8.11}+...+\dfrac{6}{59.62}+\dfrac{6}{62.65}\)
1/2.5+1/5.8+.....+1/23.26+1/26.29
Gải giúp mình với, mình cảm ơn
Đặt A = \(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{23.26}+\frac{1}{26.29}\)
3A = \(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{23.26}+\frac{3}{26.29}\)
= \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}\)
= \(\frac{1}{2}-\frac{1}{29}\)\(=\frac{27}{58}\)
A = \(\frac{27}{58}:3=\frac{9}{58}\)
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{23.26}+\frac{1}{26.29}=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{23.26}+\frac{3}{26.29}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}\right)=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{29}\right)\)
\(=\frac{1}{3}.\frac{27}{58}=\frac{9}{58}\)
Đặt A = \(\frac{1}{2.5}+\frac{1}{5.8}+.....+\frac{1}{23.26}+\frac{1}{26.29}\)
\(\Rightarrow3A=\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{23.26}+\frac{3}{26.29}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{29}\)
\(\Rightarrow3A=\frac{27}{58}\)
\(\Rightarrow A=\frac{27}{58}:3\)
\(\Rightarrow A=\frac{9}{58}\)
Bài 1:tính tổng S =6/2.5 +6/5.8 +6/8.11 + ... +6/29.32 và so sánh S với 1.
Bài 2 :Tìm x :
a, x+1/2 =8/x+1
b, x:(19/2 - 3/2 )=0,4 +2/9 - 2/11 /1,6+8/9 -8/11
Bài 1 :
S = \(\frac{6}{2.5}+\frac{6}{5.8}+...+\frac{6}{29.32}\)
= 2 . \(\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{29.32}\right)\)
= 2 . \(\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{29}-\frac{1}{32}\right)\)
= 2 . \(\left(\frac{1}{2}-\frac{1}{32}\right)\)= ....
Tính các tổng sau
a.6/2.5+6/5.8+6/8.11+...+6/44.47+6/47.50
b.1/9.11+1/11.13+...+1/41.43+1/43.45
a) \(\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+.......+\frac{6}{44.47}+\frac{6}{47.50}\)
\(=2\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+......+\frac{3}{44.47}+\frac{3}{47.50}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{44}-\frac{1}{47}+\frac{1}{47}-\frac{1}{50}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{50}\right)\)
\(=1-\frac{1}{25}\)
\(=\frac{24}{25}\)
đặt \(A=\frac{1}{9.11}+\frac{1}{11.13}+........+\frac{1}{41.43}+\frac{1}{43.45}\)
\(2A=\frac{2}{9.11}+\frac{2}{11.13}+.......+\frac{2}{41.43}+\frac{2}{43.45}\)
\(2A=\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+......+\frac{1}{41}-\frac{1}{43}+\frac{1}{43}-\frac{1}{45}\)
\(2A=\frac{1}{9}-\frac{1}{45}\)
\(2A=\frac{4}{45}\)
\(A=\frac{4}{45}\div2\)
\(A=\frac{2}{45}\)
C= 6/2.5+6/5.8+...+6/92.95\
giải ngắn gọn giúp mik vs ak
C = 6/2.5 + 6/5.8 + 6/8.11 +...+ 6/29.32
C = 2.(3/2.5 + 3/5.8 + 3/8.11 + ... + 3/29.32)
C = 2.(1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/29 - 1/32)
C = 2.(1/2 - 1/32)
C = 2.15/32
C = 15/16