Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Quan Ho
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 2 2021 lúc 18:29

Ta có: \(\dfrac{\left(x+3\right)\left(x-3\right)}{3}+2=x\left(1-x\right)\)

\(\Leftrightarrow\dfrac{x^2-9}{3}+\dfrac{6}{3}=\dfrac{3x\left(1-x\right)}{3}\)

\(\Leftrightarrow x^2-9+6=3x-3x^2\)

\(\Leftrightarrow x^2-3-3x+3x^2=0\)

\(\Leftrightarrow4x^2-3x-3=0\)

\(\Delta=9-4\cdot4\cdot\left(-3\right)=9+48=57\)

Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là 

\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{57}}{8}\\x_2=\dfrac{3+\sqrt{57}}{8}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{3-\sqrt{57}}{8};\dfrac{3+\sqrt{57}}{8}\right\}\)

Làm gì mà căng
Xem chi tiết
Thân An Phương
Xem chi tiết
FC_Đoàn Văn Hậu
Xem chi tiết
Dương Lam Hàng
21 tháng 3 2019 lúc 8:59

\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)

\(\Leftrightarrow2\left(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024\right)=x+y+z\)

\(\Leftrightarrow2\sqrt{x-2016}+2\sqrt{y-2017}+2\sqrt{z-2018}+6048=x+y+z\)

\(\Leftrightarrow x-2\sqrt{x-2016}+y-2\sqrt{y-2017}+z-2\sqrt{z-2018}+6048=0\)

\(\Leftrightarrow x-2016-2\sqrt{x-2016}+1+y-2017+2\sqrt{y-2017}+1+z-2018-2\sqrt{z-2018}+1=0\)

\(\Leftrightarrow\left(\sqrt{x-2016}-1\right)^2+\left(\sqrt{y-2017}-1\right)^2+\left(\sqrt{z-2018}-1\right)^2=0\)

\(ĐK:x\ge2016;y\ge2017;z\ge2018\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}-1=0\\\sqrt{y-2017}-1=0\\\sqrt{z-2018}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}=1\\\sqrt{y-2017}=1\\\sqrt{z-2018}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2017\\y=2018\\z=2019\end{cases}}}\)

Đại Dương
21 tháng 3 2019 lúc 9:08

nhân đôi 2 vế rồi chuyển vế trái sang vế phải, ta có:

\(\left(\sqrt{x-2016}-1\right)^2\) + \(\left(\sqrt{y-2017}-1\right)^2\)

\(\left(\sqrt{z-2018}-1\right)^2\)

= 0

Đỗ Phú Thịnh
Xem chi tiết
Nguyễn Huy Tú
21 tháng 12 2020 lúc 17:34

Mk sai từ dòng 3 nhá -- 

\(=\left(x^2-1\right)\left(\frac{2-\left(x^2-1\right)}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\frac{\left(x^2-1\right)\left(2-\left(x^2-1\right)\right)}{\left(x-1\right)\left(x+1\right)}=2-x^2+1=3-x^2\)

Khách vãng lai đã xóa
Nguyễn Huy Tú
21 tháng 12 2020 lúc 17:26

\(\left(x^2-1\right)\left(\frac{1}{x-1}-\frac{1}{x+1}-1\right)\)

\(=\left(x^2-1\right)\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{\left(x+1\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\right)\)

\(=\left(x^2-1\right)\left(\frac{-\left(x^2-1\right)}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\frac{-\left(x-1\right)^2\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=-\left(x-1\right)\left(x+1\right)=-x^2+1\)

Khách vãng lai đã xóa
Nguyễn Minh Quang
21 tháng 12 2020 lúc 17:29

\(\left(x^2-1\right)\left(\frac{1}{x-1}-\frac{1}{x+1}-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(\frac{1}{x-1}-\frac{1}{x+1}-1\right)\)

\(=\left(x+1\right)-\left(x-1\right)-\left(x^2-1\right)\)

\(=3-x^2\)

Khách vãng lai đã xóa
Mai Ngoc
Xem chi tiết
Nghi Tăng
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
23 tháng 12 2017 lúc 17:45

Ta có : x2(x - 1)2 + x(x2 - 1) = 2(x + 1)2

<=> x2(x2 - 2x + 1) + x3 - x - 2(x2 + 2x + 1) = 0

<=> x4 - 2x3 + x2 + x3 - x - 2x2 - 4x - 2 = 0

<=> x4 - x3 - x2 - 5x - 2 = 0 

Làm gì mà căng
Xem chi tiết
Làm gì mà căng
2 tháng 12 2019 lúc 11:38

Nhanh lên nhé mình xin các bạn đấy

Khách vãng lai đã xóa
Vũ Hoàng
Xem chi tiết
Thắng Nguyễn
19 tháng 7 2016 lúc 22:31

Bài 1:

F=(x-1)3-x2(x-3)

=x3-3x2+3x-1-x3-3x2

=(x3-x3)-(3x2-3x2)+3x-1

=3x-1

Bài 2:

a)(x+3)2=(x-2)(x+4)

<=>x2+6x+9=x2+2x-8

<=>4x=-17

<=>x=-17/4

b)(x+4)2=2x2+16

<=>x2+8x+16=2x2+16

<=>8x=x2

<=>8x-x2=0

<=>x(8-x)=0

<=>x=0 hoặc x=8

Hoàng Thị Thu Hà
19 tháng 7 2016 lúc 22:33

Bài 1:

F=(x-1)3-x2(x-3)=x3-3x2+3x-1-x3+3x2=3x-1

Bài 2:

a, <=>(x+3)2-(x-2)(x-4)=0

    <=>x^2+6x+9-x^2-4x+2x+8=0

    <=>4x+17=0

    <=>x=-4,25

 b,<=>(x+4)2-2x2-16=0

    <=>x2+8x+16-2x2-16=0

    <=>8x-x2=0

   <=>x(8-x)=0

   <=>\(\orbr{\begin{cases}x=0\\x=8\end{cases}}\)

Bài 3:(đợi một xíu)