Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
harri nguyễn
Xem chi tiết
nguyễn thị hạnh
8 tháng 5 2018 lúc 13:20

Ta dễ dàng chứng minh:
\(0< a,b,c\le\frac{3}{2}\)
Áp dụng BDT cô si cho ba số dương ta có:
\(\left(\frac{3}{2}-a\right)+\left(\frac{3}{2}-b\right)+\left(\frac{3}{2}-c\right)\ge3\sqrt[3]{\frac{3}{2}-a)(\frac{3}{2}-b)(\frac{3}{2}-c)}\)

\(\Leftrightarrow\left(\frac{1}{2}\right)^3\ge\frac{3}{2}-a)(\frac{3}{2}-b)(\frac{3}{2}-c)\)

\(\Leftrightarrow\frac{1}{8}\ge\frac{27}{8}-\frac{9}{4}\left(a+b+c\right)+\frac{3}{2}\left(ab+bc+ac\right)-abc\)

\(\Leftrightarrow\frac{1}{8}\ge-\frac{27}{8}+\frac{3}{2}\left(ab+bc+ac\right)-abc\)

\(\Leftrightarrow4abc\ge-14+6\left(ab+bc+ac\right)\)

\(\Leftrightarrow3a^2+3b^2+3c^2+4abc\ge13\)

Trần Nguyễn Tanh Ngọc
Xem chi tiết
nguyen thi cho
29 tháng 3 2021 lúc 22:13

câu trả lời

Khách vãng lai đã xóa
Angela jolie
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 2 2020 lúc 0:36

Do a;b;c là 3 cạnh của tam giác nên:

\(abc\ge\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow abc\ge27-8abc-18\left(a+b+c\right)+12\left(ab+bc+ca\right)\)

\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)

\(\Leftrightarrow abc\ge\frac{4}{3}\left(ab+bc+ca\right)-3\)

\(\Rightarrow VT\ge3\left(a^2+b^2+c^2\right)+\frac{16}{3}\left(ab+bc+ca\right)-12\)

\(\Leftrightarrow VT\ge\frac{8}{3}\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+\frac{1}{3}\left(a^2+b^2+c^2\right)-12\)

\(\Leftrightarrow VT\ge\frac{8}{3}\left(a+b+c\right)^2+\frac{1}{9}\left(a+b+c\right)^2-12=13\)

Khách vãng lai đã xóa
nam nguyennam
Xem chi tiết
Phạm Thị Hằng
Xem chi tiết
alibaba nguyễn
27 tháng 7 2017 lúc 16:39

Ta có:

\(a< b+c\)

\(\Leftrightarrow2a< a+b+c=2\)

\(\Leftrightarrow a< 1\)

Tương tự ta cũng có:

\(\hept{\begin{cases}b< 1\\c< 1\end{cases}}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)

\(\Leftrightarrow-abc+ab+bc+ca-a-b-c+1>0\)

\(\Leftrightarrow abc< \left(ab+bc+ca\right)-1\)

\(\Leftrightarrow2abc< 2\left(ab+bc+ca\right)-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca\right)-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< \left(a+b+c\right)^2+2=4-2=2\)

Xinnmeii (Hân)
Xem chi tiết
Nguyễn Linh Chi
2 tháng 8 2020 lúc 0:43

Đặt: 

x = a + c - b ; y = a + b - c ; z = b + c - a > 0 vì a; b ; c là độ dài 3 cạnh của 1 tam giác 

=> x + y + z = a + b + c 

=> a = \(\frac{x+y}{2}\); b = \(\frac{y+z}{2}\); c = \(\frac{x+z}{2}\)

=> 3a - b + c = 2 a + ( a - b + c ) =  ( x  + y ) + x = 2x + y 

Tương tự: 3b - c + a = 2y + z ; 3c - a + b =  x + 2z

Đưa về bài toán: Chứng minh: 

\(\frac{x+y}{2\left(2x+y\right)}+\frac{y+z}{2\left(2y+z\right)}+\frac{z+x}{2\left(2z+x\right)}\ge1\)

<=> \(\frac{2x+2y}{2x+y}+\frac{2y+2z}{2y+z}+\frac{2z+2x}{2z+x}\ge4\)(1)

Ta có: VT = \(1+\frac{y}{2x+y}+1+\frac{z}{2y+z}+1+\frac{x}{2z+x}\)

\(=3+\left(\frac{y}{2x+y}+\frac{z}{2y+z}+\frac{x}{2z+x}\right)\)

\(=3+\left(\frac{y^2}{2xy+y^2}+\frac{z^2}{2yz+z^2}+\frac{x^2}{2zx+x^2}\right)\)

\(\ge3+\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=3+1=4\)

=> (1) đúng 

=> Bất đẳng thức ban đầu đúng

Dấu "=" xảy ra <=> x = y = z <=>  a = b = c

Khách vãng lai đã xóa
Miuuu
Xem chi tiết
Diệp Nguyễn Thị Huyền
Xem chi tiết
Edogawa Conan
5 tháng 7 2021 lúc 9:28

Ta có:

A = \(\frac{a}{2b+3c}+\frac{b}{2c+3a}+\frac{c}{3b+2a}=\frac{a^2}{2ab+3ac}+\frac{b^2}{2bc+3ab}+\frac{c^2}{3bc+2ac}\)

\(\ge\frac{\left(a+b+c\right)^2}{2ab+3ac+2bc+3ab+3bc+2ac}\)(bđt svacxo \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\))

\(\ge\frac{\left(a+b+c\right)^2}{5\left(ab+bc+ac\right)}\ge\frac{\left(a+b+c\right)^2}{\frac{5\left(a+b+c\right)^2}{3}}\) (bđt \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}\)(*)

CM bđt * <=> \(3xy+3yz+3xz\le x^2+y^2+z^2+2xz+2xy+2yz\)

<=> \(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\ge0\) (luôn đúng)

<=> A \(\ge\frac{3}{5}\) --> ĐPCM

Khách vãng lai đã xóa
PHẠM THANH LAM
Xem chi tiết
Nguyễn Công Thái Bảo
26 tháng 3 2020 lúc 10:37

Ta có:

a<b+ca<b+c 
--> a+a<a+b+ca+a<a+b+c 
--> 2a<22a<2 
--> a<1a<1 

Tương tự ta có : b<1,c<1b<1,c<1 

Suy ra: (1−a)(1−b)(1−c)>0(1−a)(1−b)(1−c)>0 
⇔ (1–b–a+ab)(1–c)>0(1–b–a+ab)(1–c)>0 
⇔ 1–c–b+bc–a+ac+ab–abc>01–c–b+bc–a+ac+ab–abc>0 
⇔ 1–(a+b+c)+ab+bc+ca>abc1–(a+b+c)+ab+bc+ca>abc 

Nên abc<−1+ab+bc+caabc<−1+ab+bc+ca 
⇔ 2abc<−2+2ab+2bc+2ca2abc<−2+2ab+2bc+2ca 
⇔ a2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2caa2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2ca 
⇔ a2+b2+c2+2abc<(a+b+c)2−2a2+b2+c2+2abc<(a+b+c)2−2 
⇔ a2+b2+c2+2abc<22−2a2+b2+c2+2abc<22−2 , (do a+b=c=2a+b=c=2 )
⇔ dpcm

Khách vãng lai đã xóa