Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Thuỷ Nguyễn
Xem chi tiết
Akai Haruma
4 tháng 5 2023 lúc 14:04

Lời giải:

$S=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}$

$5S=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+....+\frac{99}{5^{99}}$
$5S-S=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}$

$4S+\frac{99}{5^{100}}=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}$

$5(4S+\frac{99}{5^{100}})=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}$

$5(4S+\frac{99}{5^{100}})-(4S+\frac{99}{5^{100}})=1-\frac{1}{5^{99}}$
$4(4S+\frac{99}{5^{100}})=1-\frac{1}{5^{99}}$

$16S=1-\frac{1}{5^{99}}-\frac{99.4}{5^{100}}<1$

$\Rightarrow S< \frac{1}{16}$

Gia Bảo
Xem chi tiết
Lê Anh  Quân
Xem chi tiết
sahara
Xem chi tiết
nguyen xuan duong
Xem chi tiết
Bùi Thế Hào
23 tháng 3 2017 lúc 14:43

Bạn tìm bài giải của Bùi Thế Hào, lúc sáng có giải rồi đấy

Phạm Hoàng Kiệt
Xem chi tiết
Đinh Đức Hùng
4 tháng 1 2017 lúc 19:35

Ta có : S = ( 5 + 52 ) + ( 53 + 54 ) + .... + ( 599 + 5100 )

= 5 ( 1 + 5 ) + 53 ( 1 + 5 ) + ..... + 599 ( 1 + 5 )

= 5.6 + 53.6 + .... + 599.6

= 6 ( 5 + 53 + ... + 599 )

Vì 6 chia hết cho 6 nên 6 ( 5 + 53 + ... + 599 ) chia hết cho 6 

Hay S chia hết cho 6 ( đpcm )

Nguyễn Ngọc Dương
4 tháng 1 2017 lúc 19:43

Ta có A=5+52+53+...+599+5100=(5+52)+(53+54)+...+(599+5100)

A=5.(1+5)+53.(1+5)+599.(1+5)

A=5.6+53.6+...+599.6

A=6.(5+53+...+599) sẽ chia hết cho 6

mik nha bài nay mik làm HSG lớp 6 quen rùi!!!!!

Lê Thành Trung
4 tháng 1 2017 lúc 20:33

Gộp 2 số lại

Lê Thị Thùy Duyên
Xem chi tiết
Hoàng Nhật Mai
Xem chi tiết
pham the cuong
6 tháng 3 2018 lúc 20:15

ban h cho minh di

Đinh Đức Hùng
12 tháng 7 2018 lúc 9:35

\(S=5\left(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}\right)\)Ta có :

 \(S< 5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=5\left(1-\frac{1}{100}\right)< 5\)

\(S>5\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\right)=5\left(\frac{1}{2}-\frac{1}{101}\right)>2\)

\(\Rightarrow2< S< 5\)

Nguyễn Hoàng Thiên Kim
Xem chi tiết
Bùi Thế Hào
23 tháng 3 2017 lúc 11:43

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\); ...; \(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

=> S < \(5\left(1-\frac{1}{100}\right)=5.\frac{99}{100}< 5.1=5\)=> S<5

Lại có: \(\frac{1}{2^2}>\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)\(\frac{1}{3^2}>\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)\(\frac{1}{100^2}>\frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)

=> \(S>5\left(\frac{1}{2}-\frac{1}{101}\right)=5.\frac{101-2}{2.101}=\frac{5.99}{2.101}~2,45\)=> S>2

Vậy 2 < S < 5 => Đpcm