Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Thị Bình
Xem chi tiết
Đỗ Nguyễn Quốc Đạt
31 tháng 3 2015 lúc 19:22

x-y-z=0

=> x=y+z

     y=x-z

    -z=y-x

B=(1-z/x)(1-x/y)(1+y/z)

B=((x-z)/x)((y-x)/y)((z+y)/z)

B=(y/x)(-z/y)(x/z)

B=(-z.y.x)/(x.y.z)

B=-1

Nguyễn Minh Tuấn
22 tháng 4 2016 lúc 20:49

thank ban nha

Từ Nguyễn Đức Anh
26 tháng 11 2016 lúc 20:59

B=-1    ^_^

trần thị ngọc trâm
Xem chi tiết
Giang Madridista
Xem chi tiết
Muôn cảm xúc
5 tháng 5 2016 lúc 21:15

x - y - z = 0

x = y + z

y = x - z

z = x - y => -z = y - x

B = (1 - z/x)(1 - x/y) (1 + y/z)

B = (x/x - z/x)( y/y - x/y) ( z/z + y/z)

B = \(\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{z+x}{z}=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)

 

Hồ Văn Minh Nhật
Xem chi tiết
Phương Thảo Nguyễn
Xem chi tiết
nguyễn xoan trà
Xem chi tiết
Đinh quang hiệp
8 tháng 5 2018 lúc 17:16

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z};\frac{1}{x}+\frac{1}{z}=-\frac{1}{y};\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\)

\(A=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\)

\(=\left(\frac{y}{x}+\frac{y}{z}\right)+\left(\frac{x}{y}+\frac{x}{z}\right)+\left(\frac{z}{x}+\frac{z}{y}\right)=y\left(\frac{1}{x}+\frac{1}{z}\right)+x\left(\frac{1}{y}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=y\cdot-\frac{1}{y}+x\cdot-\frac{1}{x}+z\cdot-\frac{1}{z}=-1-1-1=-3\)

vậy A=-3

Đỗ Thị Loan
Xem chi tiết
Đoàn Đức Hà
22 tháng 6 2021 lúc 15:17

\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{\left(x-z\right)\left(y-x\right)\left(y+z\right)}{xyz}=\frac{y.\left(-z\right).x}{xyz}=-1\)

Khách vãng lai đã xóa
Nguyen Dinh Cuong
Xem chi tiết
Jin Air
19 tháng 5 2016 lúc 10:00

x-y-z=0 => x=y+z

thế vào rồi tính B

Đức Nguyễn Ngọc
19 tháng 5 2016 lúc 13:04

Ta có: x-y-z = 0

\(\Rightarrow\) x = y+z

\(\Rightarrow\)y = x-z

\(\Rightarrow\)z = x-y

Thay vào B ta suy ra: \(\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(\left(1-\frac{x-y}{x}\right)\left(1-\frac{y+z}{y}\right)\left(1+\frac{x-z}{z}\right)\)

\(\left(\frac{-y}{x}\right).\left(\frac{z}{y}\right).\left(\frac{x}{z}\right)\)

= -y/y

= -1

Vậy B = -1

Bùi Đoàn Sơn
Xem chi tiết
Đinh Đức Hùng
12 tháng 5 2017 lúc 21:42

Ta có : \(A=\left(1-\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1-\frac{y}{z}\right)=\frac{x-z}{x}\cdot\frac{x+y}{y}\cdot\frac{z-y}{z}\)

\(x+y-z=0\Leftrightarrow\hept{\begin{cases}x+y=z\\x-z=-y\\z-y=x\end{cases}}\) thay vào A ta được :

\(A=\frac{-y}{x}\cdot\frac{z}{y}\cdot\frac{x}{z}==\frac{-y.z.x}{x.y.z}=-1\)